A self-stabilizing distributed algorithm for the 1-MIS problem under the distance-3 model

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Hirotsugu Kakugawa, Sayaka Kamei, Masahiro Shibata, Fukuhito Ooshita
{"title":"A self-stabilizing distributed algorithm for the 1-MIS problem under the distance-3 model","authors":"Hirotsugu Kakugawa,&nbsp;Sayaka Kamei,&nbsp;Masahiro Shibata,&nbsp;Fukuhito Ooshita","doi":"10.1002/cpe.8281","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Fault-tolerance and self-organization are critical properties in modern distributed systems. Self-stabilization is a class of fault-tolerant distributed algorithms which has the ability to recover from any kind and any finite number of transient faults and topology changes. In this article, we propose a self-stabilizing distributed algorithm for the 1-MIS problem under the unfair central daemon assuming the distance-3 model. Here, in the distance-3 model, each process can refer to the values of local variables of processes within three hops. Intuitively speaking, the 1-MIS problem is a variant of the maximal independent set (MIS) problem with improved local optimizations. The time complexity (convergence time) of our algorithm is <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ O(n) $$</annotation>\n </semantics></math> steps and the space complexity is <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mi>log</mi>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ O\\left(\\log n\\right) $$</annotation>\n </semantics></math> bits, where <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> is the number of processes. Finally, we extend the notion of 1-MIS to <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>-MIS for each nonnegative integer <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>, and compare the set sizes of <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>-MIS (<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>…</mi>\n </mrow>\n <annotation>$$ p=0,1,2,\\dots $$</annotation>\n </semantics></math>) and the maximum independent set.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 26","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8281","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Fault-tolerance and self-organization are critical properties in modern distributed systems. Self-stabilization is a class of fault-tolerant distributed algorithms which has the ability to recover from any kind and any finite number of transient faults and topology changes. In this article, we propose a self-stabilizing distributed algorithm for the 1-MIS problem under the unfair central daemon assuming the distance-3 model. Here, in the distance-3 model, each process can refer to the values of local variables of processes within three hops. Intuitively speaking, the 1-MIS problem is a variant of the maximal independent set (MIS) problem with improved local optimizations. The time complexity (convergence time) of our algorithm is O ( n ) $$ O(n) $$ steps and the space complexity is O ( log n ) $$ O\left(\log n\right) $$ bits, where n $$ n $$ is the number of processes. Finally, we extend the notion of 1-MIS to p $$ p $$ -MIS for each nonnegative integer p $$ p $$ , and compare the set sizes of p $$ p $$ -MIS ( p = 0 , 1 , 2 , $$ p=0,1,2,\dots $$ ) and the maximum independent set.

距离-3 模型下 1-MIS 问题的自稳定分布式算法
摘要容错和自组织是现代分布式系统的关键特性。自稳定是一类具有容错能力的分布式算法,它能够从任何种类和有限数量的瞬时故障和拓扑变化中恢复。在本文中,我们针对假设为距离-3 模型的不公平中央守护进程下的 1-MIS 问题提出了一种自稳定分布式算法。在距离-3 模型中,每个进程都可以参考三个跳内进程的局部变量值。直观地说,1-MIS 问题是最大独立集(MIS)问题的一个变种,改进了局部优化。我们算法的时间复杂度(收敛时间)为步,空间复杂度为比特,其中比特为进程数。最后,我们将 1-MIS 的概念扩展为每个非负整数的 -MIS,并比较了 -MIS()和最大独立集的集合大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信