{"title":"Collision detection and mitigation based on optimization and Kronecker recurrent neural network in WSN","authors":"Akhil Khare, Kannapiran Selvakumar, Raman Dugyala","doi":"10.1002/dac.5977","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Nowadays, wireless sensor networks (WSNs) have paid huge attention among researchers due to their wide applications. WSNs possess multiple sensor nodes that transmit data to each other by using constrained energy resources. The sensor nodes are highly affected by collision due to the transmission of packets over the network by one or two nodes at the same time. Collision detection is necessary to increase network security and enhance the lifetime of sensor nodes. In most of the previous research, efficiently implementing collision detection algorithms while minimizing resource usage remains a significant challenge. Thus, a hybrid deep learning model deep Kronecker recurrent neural network (DKRNN) is developed in this research. Here, the cluster head is selected using the chronological skill optimization algorithm (CSOA) algorithmic approach by considering multi-objective parameters like energy, distance, delay, and trust. The network-based parameters are then extracted from the network. Later, the collision is detected using the DKRNN approach and the collision is mitigated finally using a packet pre-scheduling model named Dolphin Ant Lion Optimization (Dolphin ALO). Moreover, the detection performance of CSOA+ DKRNN is validated, and it achieved superior performance with a collision detection rate (CDR) of 0.940, packet delivery ratio (PDR) of 0.660, throughput of 0.850Mbps, and energy consumption of 0.110 J.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"38 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.5977","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, wireless sensor networks (WSNs) have paid huge attention among researchers due to their wide applications. WSNs possess multiple sensor nodes that transmit data to each other by using constrained energy resources. The sensor nodes are highly affected by collision due to the transmission of packets over the network by one or two nodes at the same time. Collision detection is necessary to increase network security and enhance the lifetime of sensor nodes. In most of the previous research, efficiently implementing collision detection algorithms while minimizing resource usage remains a significant challenge. Thus, a hybrid deep learning model deep Kronecker recurrent neural network (DKRNN) is developed in this research. Here, the cluster head is selected using the chronological skill optimization algorithm (CSOA) algorithmic approach by considering multi-objective parameters like energy, distance, delay, and trust. The network-based parameters are then extracted from the network. Later, the collision is detected using the DKRNN approach and the collision is mitigated finally using a packet pre-scheduling model named Dolphin Ant Lion Optimization (Dolphin ALO). Moreover, the detection performance of CSOA+ DKRNN is validated, and it achieved superior performance with a collision detection rate (CDR) of 0.940, packet delivery ratio (PDR) of 0.660, throughput of 0.850Mbps, and energy consumption of 0.110 J.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.