Strichartz estimates and global well-posedness of the cubic NLS on

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sebastian Herr, Beomjong Kwak
{"title":"Strichartz estimates and global well-posedness of the cubic NLS on","authors":"Sebastian Herr, Beomjong Kwak","doi":"10.1017/fmp.2024.11","DOIUrl":null,"url":null,"abstract":"The optimal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000118_inline2.png\"/> <jats:tex-math> $L^4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Strichartz estimate for the Schrödinger equation on the two-dimensional rational torus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000118_inline3.png\"/> <jats:tex-math> $\\mathbb {T}^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is proved, which improves an estimate of Bourgain. A new method based on incidence geometry is used. The approach yields a stronger <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000118_inline4.png\"/> <jats:tex-math> $L^4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> bound on a logarithmic time scale, which implies global existence of solutions to the cubic (mass-critical) nonlinear Schrödinger equation in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000118_inline5.png\"/> <jats:tex-math> $H^s(\\mathbb {T}^2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000118_inline6.png\"/> <jats:tex-math> $s&gt;0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and data that are small in the critical norm.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The optimal $L^4$ -Strichartz estimate for the Schrödinger equation on the two-dimensional rational torus $\mathbb {T}^2$ is proved, which improves an estimate of Bourgain. A new method based on incidence geometry is used. The approach yields a stronger $L^4$ bound on a logarithmic time scale, which implies global existence of solutions to the cubic (mass-critical) nonlinear Schrödinger equation in $H^s(\mathbb {T}^2)$ for any $s>0$ and data that are small in the critical norm.
立方 NLS 的斯特里查兹估计值和全局良好性
证明了二维有理环 $\mathbb {T}^2$ 上薛定谔方程的最优 $L^4$ -Strichartz 估计值,它改进了布尔甘的估计值。使用了一种基于入射几何的新方法。该方法在对数时间尺度上得到了更强的 $L^4$ 约束,这意味着对于任意 $s>0$ 和在临界规范中很小的数据,在 $H^s(\mathbb {T}^2)$ 中的三次(质量临界)非线性薛定谔方程的解全局存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信