{"title":"Strichartz estimates and global well-posedness of the cubic NLS on","authors":"Sebastian Herr, Beomjong Kwak","doi":"10.1017/fmp.2024.11","DOIUrl":null,"url":null,"abstract":"The optimal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000118_inline2.png\"/> <jats:tex-math> $L^4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Strichartz estimate for the Schrödinger equation on the two-dimensional rational torus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000118_inline3.png\"/> <jats:tex-math> $\\mathbb {T}^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is proved, which improves an estimate of Bourgain. A new method based on incidence geometry is used. The approach yields a stronger <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000118_inline4.png\"/> <jats:tex-math> $L^4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> bound on a logarithmic time scale, which implies global existence of solutions to the cubic (mass-critical) nonlinear Schrödinger equation in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000118_inline5.png\"/> <jats:tex-math> $H^s(\\mathbb {T}^2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000118_inline6.png\"/> <jats:tex-math> $s>0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and data that are small in the critical norm.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"44 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.11","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The optimal $L^4$ -Strichartz estimate for the Schrödinger equation on the two-dimensional rational torus $\mathbb {T}^2$ is proved, which improves an estimate of Bourgain. A new method based on incidence geometry is used. The approach yields a stronger $L^4$ bound on a logarithmic time scale, which implies global existence of solutions to the cubic (mass-critical) nonlinear Schrödinger equation in $H^s(\mathbb {T}^2)$ for any $s>0$ and data that are small in the critical norm.
期刊介绍:
Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.