Local parameters of supercuspidal representations

IF 2.8 1区 数学 Q1 MATHEMATICS
Wee Teck Gan, Michael Harris, Will Sawin, Raphaël Beuzart-Plessis
{"title":"Local parameters of supercuspidal representations","authors":"Wee Teck Gan, Michael Harris, Will Sawin, Raphaël Beuzart-Plessis","doi":"10.1017/fmp.2024.10","DOIUrl":null,"url":null,"abstract":"For a connected reductive group <jats:italic>G</jats:italic> over a nonarchimedean local field <jats:italic>F</jats:italic> of positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline1.png\"/> <jats:tex-math> ${\\mathcal {L}}^{ss}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to each irreducible representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline2.png\"/> <jats:tex-math> $\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our first result shows that the Genestier-Lafforgue parameter of a tempered <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline3.png\"/> <jats:tex-math> $\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> can be uniquely refined to a tempered L-parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline4.png\"/> <jats:tex-math> ${\\mathcal {L}}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline5.png\"/> <jats:tex-math> ${\\mathcal {L}}^{ss}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for unramified <jats:italic>G</jats:italic> and supercuspidal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline6.png\"/> <jats:tex-math> $\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> constructed by induction from an open compact (modulo center) subgroup. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline7.png\"/> <jats:tex-math> ${\\mathcal {L}}^{ss}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is pure in an appropriate sense, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline8.png\"/> <jats:tex-math> ${\\mathcal {L}}^{ss}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is ramified (unless <jats:italic>G</jats:italic> is a torus). If the inducing subgroup is sufficiently small in a precise sense, we show <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline9.png\"/> <jats:tex-math> $\\mathcal {L}^{ss}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline10.png\"/> <jats:tex-math> ${\\mathbb {P}}^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and a simple application of Deligne’s Weil II.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"87 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.10","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a connected reductive group G over a nonarchimedean local field F of positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter ${\mathcal {L}}^{ss}(\pi )$ to each irreducible representation $\pi $ . Our first result shows that the Genestier-Lafforgue parameter of a tempered $\pi $ can be uniquely refined to a tempered L-parameter ${\mathcal {L}}(\pi )$ , thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of ${\mathcal {L}}^{ss}(\pi )$ for unramified G and supercuspidal $\pi $ constructed by induction from an open compact (modulo center) subgroup. If ${\mathcal {L}}^{ss}(\pi )$ is pure in an appropriate sense, we show that ${\mathcal {L}}^{ss}(\pi )$ is ramified (unless G is a torus). If the inducing subgroup is sufficiently small in a precise sense, we show $\mathcal {L}^{ss}(\pi )$ is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is ${\mathbb {P}}^1$ and a simple application of Deligne’s Weil II.
超括弧表示的局部参数
对于正特征非archimedean局部域 F 上的连通还原群 G,Genestier-Lafforgue 和 Fargues-Scholze 给每个不可还原表示 $\pi $ 附加了一个半简单参数 ${mathcal {L}}^{ss}(\pi )$ 。我们的第一个结果表明,有节制的 $\pi $ 的 Genestier-Lafforgue 参数可以被唯一地细化为有节制的 L 参数 ${mathcal {L}}(\pi )$ ,从而给出了与 Genestier-Lafforgue 构造兼容的唯一的局部朗兰兹对应关系。我们的第二个结果建立了${\mathcal {L}}^{ss}(\pi )$对于无ramified G 和从开放紧凑(模中心)子群通过归纳法构造的超括弧$\pi $的斜切性质。如果 ${\mathcal {L}}^{ss}(\pi )$ 是适当意义上的纯集,我们就可以证明 ${\mathcal {L}}^{ss}(\pi )$ 是夯实的(除非 G 是环状)。如果诱导子群在精确意义上足够小,我们就会证明 $\mathcal {L}^{ss}(\pi )$ 是狂野夯实的。证明是通过全局论证的,涉及基曲线为 ${mathbb {P}}^1$ 时严格控制斜伸的波恩卡列数列的构造,以及德利涅的魏尔 II 的简单应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信