{"title":"Post-heading dry-matter transport and nutrient uptake differentiate hybrid and inbred indica rice in the double-cropping system in South China","authors":"You-qiang Fu, Chu-sheng Lu, Xu-hua Zhong, Kai-ming Liang, Jun-feng Pan, Yan-zhuo Liu, Xiang-yu Hu, Rui Hu, Mei-Juan Li, Xin-yu Wang, Qun-huan Ye, Yuan-hong Yin, Ji-chuang Huang, Nong-rong Huang","doi":"10.3389/fpls.2024.1433402","DOIUrl":null,"url":null,"abstract":"IntroductionHybrid rice demonstrated superior performance in enhancing yield and efficiency in rice production compared to inbred rice. Nevertheless, the underlying mechanism responsible for the increased yield and efficiency of hybrid rice in South China’s double-cropping rice region remains understudied.MethodsField experiments over two consecutive years were conducted. Firstly, yield variations among 20 inbred and 15 hybrid rice cultivars prevalent in South China’s double-cropping rice system were examined. Secondly, selecting representative hybrid and inbred rice cultivars with significant yield disparities were carried out on further analyzing dry-matter production, source-sink relationships, and nutrient absorption and utilization in both rice types.ResultsHybrid rice displayed an average grain yield of 8.07 and 7.22 t hm<jats:sup>-2</jats:sup> in the early and late seasons, respectively, which corresponds to a 12.29% and 13.75% increase over inbred rice with statistically significant differences. In comparison to inbred rice, hybrid rice exhibited enhanced nitrogen concentration in leaves at the heading stage (15.48–16.20%), post-heading dry matter accumulation (52.62–73.21%), post-heading dry matter conversion rate (29.23–34.12%), and harvest index (17.31–18.37%). Additionally, grain nitrogen and phosphorus uptake in hybrid rice increased by 11.88–22.50% and 16.38–19.90%. Hybrid rice mainly improved post-heading nitrogen and phosphorus uptake and transport, while not total nitrogen and phosphorus uptake. Internal nitrogen and phosphorus use efficiency enhanced by 9.83%-14.31% and 10.15%-13.66%, respectively. Post-heading dry matter accumulation, harvest index, grain nitrogen and phosphorus uptake, and internal nitrogen and phosphorus use efficiency exhibited significant positive linear correlations with grain yield.DiscussionThe period from heading to maturity is critical for enhancing hybrid rice yield and efficiency. Improving photosynthetic capacity during this period and promoting nutrient transport to grains serve as crucial pathways for increasing grain yield and efficiency. This study is of great significance for further improvement grain yield and breeding rice cultivars with high-yield and high nutrients use efficiency for South China's double-cropped rice system.","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1433402","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
IntroductionHybrid rice demonstrated superior performance in enhancing yield and efficiency in rice production compared to inbred rice. Nevertheless, the underlying mechanism responsible for the increased yield and efficiency of hybrid rice in South China’s double-cropping rice region remains understudied.MethodsField experiments over two consecutive years were conducted. Firstly, yield variations among 20 inbred and 15 hybrid rice cultivars prevalent in South China’s double-cropping rice system were examined. Secondly, selecting representative hybrid and inbred rice cultivars with significant yield disparities were carried out on further analyzing dry-matter production, source-sink relationships, and nutrient absorption and utilization in both rice types.ResultsHybrid rice displayed an average grain yield of 8.07 and 7.22 t hm-2 in the early and late seasons, respectively, which corresponds to a 12.29% and 13.75% increase over inbred rice with statistically significant differences. In comparison to inbred rice, hybrid rice exhibited enhanced nitrogen concentration in leaves at the heading stage (15.48–16.20%), post-heading dry matter accumulation (52.62–73.21%), post-heading dry matter conversion rate (29.23–34.12%), and harvest index (17.31–18.37%). Additionally, grain nitrogen and phosphorus uptake in hybrid rice increased by 11.88–22.50% and 16.38–19.90%. Hybrid rice mainly improved post-heading nitrogen and phosphorus uptake and transport, while not total nitrogen and phosphorus uptake. Internal nitrogen and phosphorus use efficiency enhanced by 9.83%-14.31% and 10.15%-13.66%, respectively. Post-heading dry matter accumulation, harvest index, grain nitrogen and phosphorus uptake, and internal nitrogen and phosphorus use efficiency exhibited significant positive linear correlations with grain yield.DiscussionThe period from heading to maturity is critical for enhancing hybrid rice yield and efficiency. Improving photosynthetic capacity during this period and promoting nutrient transport to grains serve as crucial pathways for increasing grain yield and efficiency. This study is of great significance for further improvement grain yield and breeding rice cultivars with high-yield and high nutrients use efficiency for South China's double-cropped rice system.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.