Aboud Ahmed Awadh Bahajjaj, Abdul Ghafoor Abid, Zobia Siddique, Farah Sajjad, Iram Manzoor, Ome Parkash Kumar, Tauseef Munawar, Mika Sillanpää, Jafar Hussain Shah
{"title":"Facile construction of SnS2-MWCNTSs decorated nanoparticles for effective water splitting","authors":"Aboud Ahmed Awadh Bahajjaj, Abdul Ghafoor Abid, Zobia Siddique, Farah Sajjad, Iram Manzoor, Ome Parkash Kumar, Tauseef Munawar, Mika Sillanpää, Jafar Hussain Shah","doi":"10.1007/s10971-024-06532-4","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical water splitting is a viable strategy to produce renewable fuels such as hydrogen. Oxygen evolution reaction (OER) at the anode is getting more attention than hydrogen evolution reaction (HER) because of its higher overpotential and slower electron transfer process. Many advancements in the construction of an effective electrocatalyst have been made recently in an effort to boost OER activity. Additionally, the commercial RuO<sub>2</sub> and Pt-derived catalysts are the most fascinating and active electrocatalysts used in the OER and HER kinetics procedure. They show good activity but the massive price and insufficiency are the main obstacles to their widespread usage in the production of hydrogen and oxygen gas. In this case, SnS<sub>2</sub>_multi walled carbon nanotubes (MWCNTSs) are directly produced on nickel foam (NF) using hydrothermal synthesis. All the catalysts like SnS<sub>2</sub>, MWCNTSs, and SnS<sub>2</sub>_MWCNTSs have been developed, and then they are characterized for structural, morphological, compositional, and electrochemical characterization. The fabricated nanocomposite shows OER onset potential of 1.33 V, 116 mV overpotential at 10 mAcm<sup>−2,</sup> and has a Tafel slope of 47 mVdec<sup>−1</sup>. In contrast, its HER onset potential is −0.3 V having 209 mV overpotential at 10 mAcm<sup>−2</sup> current density and a Tafel slope of 135 mVdec<sup>−1</sup>. The presence of more electroactive sites, the lowest charge transfer resistance at the electrode-electrolyte interface, the distinct and uniform nanocrystal-like morphology, and the synergistic interaction between SnS<sub>2</sub> and MWCNTS are some of the factors that contribute to the low value of overpotential of SnS<sub>2</sub>_MWCNTSs. The resultant electrocatalyst worked well for the very effective oxidation of water and has a variety of possible applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"648 - 661"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06532-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical water splitting is a viable strategy to produce renewable fuels such as hydrogen. Oxygen evolution reaction (OER) at the anode is getting more attention than hydrogen evolution reaction (HER) because of its higher overpotential and slower electron transfer process. Many advancements in the construction of an effective electrocatalyst have been made recently in an effort to boost OER activity. Additionally, the commercial RuO2 and Pt-derived catalysts are the most fascinating and active electrocatalysts used in the OER and HER kinetics procedure. They show good activity but the massive price and insufficiency are the main obstacles to their widespread usage in the production of hydrogen and oxygen gas. In this case, SnS2_multi walled carbon nanotubes (MWCNTSs) are directly produced on nickel foam (NF) using hydrothermal synthesis. All the catalysts like SnS2, MWCNTSs, and SnS2_MWCNTSs have been developed, and then they are characterized for structural, morphological, compositional, and electrochemical characterization. The fabricated nanocomposite shows OER onset potential of 1.33 V, 116 mV overpotential at 10 mAcm−2, and has a Tafel slope of 47 mVdec−1. In contrast, its HER onset potential is −0.3 V having 209 mV overpotential at 10 mAcm−2 current density and a Tafel slope of 135 mVdec−1. The presence of more electroactive sites, the lowest charge transfer resistance at the electrode-electrolyte interface, the distinct and uniform nanocrystal-like morphology, and the synergistic interaction between SnS2 and MWCNTS are some of the factors that contribute to the low value of overpotential of SnS2_MWCNTSs. The resultant electrocatalyst worked well for the very effective oxidation of water and has a variety of possible applications.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.