Jitendra Kumar Yadav, Bharti Rani, Priyanka Saini, Ambesh Dixit
{"title":"A High-Performance and Fast-Charging Rechargeable Iron-Ion Battery Using V2O5 Porous Microspheres Cathode","authors":"Jitendra Kumar Yadav, Bharti Rani, Priyanka Saini, Ambesh Dixit","doi":"10.1002/ente.202401334","DOIUrl":null,"url":null,"abstract":"<p>Owing to iron's natural abundance, low cost, and affordability, nonaqueous rechargeable iron-ion (Fe-ion) batteries have the potential for alternative rechargeable energy-storage devices. However, developing cathodes with adequate superior Fe<sup>2+</sup> storage during charge–discharge is a major challenge. Herein, V<sub>2</sub>O<sub>5</sub> porous microspheres (V<sub>2</sub>O<sub>5</sub>–PMS) are synthesized as efficient cathodes due to their unique characteristics, including high surface area and large interlayer spacing, which provide high electrochemical performance and fast charge kinetics. The nonaqueous Fe-ion battery is fabricated under ambient conditions using mild steel as an anode and a V<sub>2</sub>O<sub>5</sub>–PMS cathode. The cyclic voltammetry measurements suggests a high diffusion coefficient of Fe<sup>2+</sup> ions in the redox process during charge–discharge. The V<sub>2</sub>O<sub>5</sub>–PMS-based cathode shows ≈205 mAh g<sup>−1</sup> gravimetric capacity at 33 and ≈70 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup> (≈15 C). It exhibits capacity retention of ≈70% in 600 cycles at a very high current rate of 3 A g<sup>−1</sup>. The impedance spectroscopy measurements are carried out between the cell's cycling to understand the electrode–electrolyte interface resistance over cycling. The four CR-2032 coin cells are assembled in series to glow a white and red light-emitting diode to demonstrate its potential as an alternative energy-storage system.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"12 12","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401334","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to iron's natural abundance, low cost, and affordability, nonaqueous rechargeable iron-ion (Fe-ion) batteries have the potential for alternative rechargeable energy-storage devices. However, developing cathodes with adequate superior Fe2+ storage during charge–discharge is a major challenge. Herein, V2O5 porous microspheres (V2O5–PMS) are synthesized as efficient cathodes due to their unique characteristics, including high surface area and large interlayer spacing, which provide high electrochemical performance and fast charge kinetics. The nonaqueous Fe-ion battery is fabricated under ambient conditions using mild steel as an anode and a V2O5–PMS cathode. The cyclic voltammetry measurements suggests a high diffusion coefficient of Fe2+ ions in the redox process during charge–discharge. The V2O5–PMS-based cathode shows ≈205 mAh g−1 gravimetric capacity at 33 and ≈70 mAh g−1 at 1 A g−1 (≈15 C). It exhibits capacity retention of ≈70% in 600 cycles at a very high current rate of 3 A g−1. The impedance spectroscopy measurements are carried out between the cell's cycling to understand the electrode–electrolyte interface resistance over cycling. The four CR-2032 coin cells are assembled in series to glow a white and red light-emitting diode to demonstrate its potential as an alternative energy-storage system.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.