Gromov--Hausdorff Distance for Directed Spaces

Lisbeth Fajstrup, Brittany Terese Fasy, Wenwen Li, Lydia Mezrag, Tatum Rask, Francesca Tombari, Živa Urbančič
{"title":"Gromov--Hausdorff Distance for Directed Spaces","authors":"Lisbeth Fajstrup, Brittany Terese Fasy, Wenwen Li, Lydia Mezrag, Tatum Rask, Francesca Tombari, Živa Urbančič","doi":"arxiv-2408.14394","DOIUrl":null,"url":null,"abstract":"The Gromov--Hausdorff distance measures the similarity between two metric\nspaces by isometrically embedding them into an ambient metric space. In this\nwork, we introduce an analogue of this distance for metric spaces endowed with\ndirected structures. The directed Gromov--Hausdorff distance measures the\ndistance between two new (extended) metric spaces, where the new metric, on the\nsame underlying space, is induced from the length of the zigzag paths. This\ndistance is then computed by isometrically embedding the directed spaces,\nendowed with the zigzag metric, into an ambient directed space with respect to\nsuch zigzag distance. Analogously to the standard Gromov--Hausdorff distance,\nwe propose alternative definitions based on the distortion of d-maps and\nd-correspondences. Unlike the classical case, these directed distances are not\nequivalent.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Gromov--Hausdorff distance measures the similarity between two metric spaces by isometrically embedding them into an ambient metric space. In this work, we introduce an analogue of this distance for metric spaces endowed with directed structures. The directed Gromov--Hausdorff distance measures the distance between two new (extended) metric spaces, where the new metric, on the same underlying space, is induced from the length of the zigzag paths. This distance is then computed by isometrically embedding the directed spaces, endowed with the zigzag metric, into an ambient directed space with respect to such zigzag distance. Analogously to the standard Gromov--Hausdorff distance, we propose alternative definitions based on the distortion of d-maps and d-correspondences. Unlike the classical case, these directed distances are not equivalent.
有向空间的格罗莫夫--豪斯多夫距离
格罗莫夫--豪斯多夫距离通过将两个度量空间等距嵌入一个环境度量空间来度量它们之间的相似性。在本研究中,我们为有向结构的度量空间引入了类似的距离。有向格罗莫夫--豪斯多夫距离测量两个新(扩展)度量空间之间的距离,其中相同底层空间上的新度量是由之字形路径的长度诱导出来的。然后,通过将赋予人字形度量的有向空间等距嵌入到环境有向空间中,就可以计算出这种人字形距离。与标准的格罗莫夫--豪斯多夫距离类似,我们提出了基于 d 映射和 d 对应关系变形的替代定义。与经典的情况不同,这些有向距离是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信