A Discrete Topological Complexity of Discrete Motion Planning

Hadi Hassanzada, Hamid Torabi, Hanieh Mirebrahimi, Ameneh Babaee
{"title":"A Discrete Topological Complexity of Discrete Motion Planning","authors":"Hadi Hassanzada, Hamid Torabi, Hanieh Mirebrahimi, Ameneh Babaee","doi":"arxiv-2408.05858","DOIUrl":null,"url":null,"abstract":"In this paper we generalize the discrete r-homotopy to the discrete (s,\nr)-homotopy. Then by this notion, we introduce the discrete motion planning for\nrobots which can move discreetly. Moreover, in this case the number of motion\nplanning, called discrete topological complexity, required for these robots is\nreduced. Then we prove some properties of discrete topological complexity; For\ninstance, we show that a discrete motion planning in a metric space X exists if\nand only if X is a discrete contractible space. Also, we prove that the\ndiscrete topological complexity depends only on the strictly discrete homotopy\ntype of spaces.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we generalize the discrete r-homotopy to the discrete (s, r)-homotopy. Then by this notion, we introduce the discrete motion planning for robots which can move discreetly. Moreover, in this case the number of motion planning, called discrete topological complexity, required for these robots is reduced. Then we prove some properties of discrete topological complexity; For instance, we show that a discrete motion planning in a metric space X exists if and only if X is a discrete contractible space. Also, we prove that the discrete topological complexity depends only on the strictly discrete homotopy type of spaces.
离散运动规划的离散拓扑复杂性
在本文中,我们将离散 R 同调概括为离散 (s,r) 同调。然后,根据这一概念,我们为可以离散移动的机器人引入了离散运动规划。此外,在这种情况下,这些机器人所需的运动规划次数(称为离散拓扑复杂性)也会减少。然后,我们证明了离散拓扑复杂性的一些性质;例如,我们证明了如果且仅当 X 是离散可收缩空间时,才存在度量空间 X 中的离散运动规划。此外,我们还证明了离散拓扑复杂性只取决于空间的严格离散同调类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信