On the mod-2 cohomology of the product of the infinite lens space and the space of invariants in a generic degree

Dang Vo Phuc
{"title":"On the mod-2 cohomology of the product of the infinite lens space and the space of invariants in a generic degree","authors":"Dang Vo Phuc","doi":"arxiv-2408.07485","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb S^{\\infty}/\\mathbb Z_2$ be the infinite lens space. Denote the\nSteenrod algebra over the prime field $\\mathbb F_2$ by $\\mathscr A.$ It is\nwell-known that the cohomology $H^{*}((\\mathbb S^{\\infty}/\\mathbb Z_2)^{\\oplus\ns}; \\mathbb F_2)$ is the polynomial algebra $\\mathcal {P}_s:= \\mathbb F_2[x_1,\n\\ldots, x_s],\\, \\deg(x_i) = 1,\\, i = 1,\\, 2,\\ldots, s.$ The Kameko squaring\noperation $(\\widetilde {Sq^0_*})_{(s; N)}: (\\mathbb F_2\\otimes_{\\mathscr A}\n\\mathcal {P}_s)_{2N+s} \\longrightarrow (\\mathbb F_2\\otimes_{\\mathscr A}\n\\mathcal {P}_s)_{N}$ is indeed a valuable homomorphism for studying the\ndimension of the indecomposables $\\mathbb F_2\\otimes_{\\mathscr A} \\mathcal\n{P}_s,$ It has been demonstrated that this $(\\widetilde {Sq^0_*})_{(s; N)}$ is\nonto. Motivated by our previous work [J. Korean Math. Soc. \\textbf{58} (2021),\n643-702], this paper studies the kernel of the Kameko $(\\widetilde\n{Sq^0_*})_{(s; N_d)}$ for the case where $s = 5$ and the generic degree $N_d =\n5(2^{d} - 1) + 11.2^{d+1}.$ We then rectify almost all of the main results that\nwere incorrect in Nguyen Khac Tin's paper [Rev. Real Acad. Cienc. Exactas Fis.\nNat. Ser. A-Mat. \\textbf{116}:81 (2022)]. We have also constructed several\nadvanced algorithms in SAGEMATH to validate our results. These new algorithms\nmake an important contribution to tackling the intricate task of explicitly\ndetermining both the dimension and the basis for the indecomposables $\\mathbb\nF_2 \\otimes_{\\mathscr A} \\mathcal {P}_s$ at positive degrees, a problem\nconcerning algorithmic approaches that had not previously been addressed by any\nauthor. Furthermore, this paper encompasses an investigation of the fifth\ncohomological transfer's behavior in the aforementioned degrees $N_d.$","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathbb S^{\infty}/\mathbb Z_2$ be the infinite lens space. Denote the Steenrod algebra over the prime field $\mathbb F_2$ by $\mathscr A.$ It is well-known that the cohomology $H^{*}((\mathbb S^{\infty}/\mathbb Z_2)^{\oplus s}; \mathbb F_2)$ is the polynomial algebra $\mathcal {P}_s:= \mathbb F_2[x_1, \ldots, x_s],\, \deg(x_i) = 1,\, i = 1,\, 2,\ldots, s.$ The Kameko squaring operation $(\widetilde {Sq^0_*})_{(s; N)}: (\mathbb F_2\otimes_{\mathscr A} \mathcal {P}_s)_{2N+s} \longrightarrow (\mathbb F_2\otimes_{\mathscr A} \mathcal {P}_s)_{N}$ is indeed a valuable homomorphism for studying the dimension of the indecomposables $\mathbb F_2\otimes_{\mathscr A} \mathcal {P}_s,$ It has been demonstrated that this $(\widetilde {Sq^0_*})_{(s; N)}$ is onto. Motivated by our previous work [J. Korean Math. Soc. \textbf{58} (2021), 643-702], this paper studies the kernel of the Kameko $(\widetilde {Sq^0_*})_{(s; N_d)}$ for the case where $s = 5$ and the generic degree $N_d = 5(2^{d} - 1) + 11.2^{d+1}.$ We then rectify almost all of the main results that were incorrect in Nguyen Khac Tin's paper [Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. \textbf{116}:81 (2022)]. We have also constructed several advanced algorithms in SAGEMATH to validate our results. These new algorithms make an important contribution to tackling the intricate task of explicitly determining both the dimension and the basis for the indecomposables $\mathbb F_2 \otimes_{\mathscr A} \mathcal {P}_s$ at positive degrees, a problem concerning algorithmic approaches that had not previously been addressed by any author. Furthermore, this paper encompasses an investigation of the fifth cohomological transfer's behavior in the aforementioned degrees $N_d.$
论无限透镜空间与一般度不变空间乘积的模-2同调
让 $\mathbb S^{\infty}/\mathbb Z_2$ 是无限透镜空间。用 $\mathscr A 表示素域 $\mathbb F_2$ 上的辛罗德代数。$ 众所周知,同调 $H^{*}((\mathbb S^{\infty}/\mathbb Z_2)^{\opluss}; \mathbb F_2)$ 是多项式代数 $\mathcal {P}_s:= \mathbb F_2[x_1,\ldots, x_s],\, \deg(x_i) = 1,\, i = 1,\, 2,\ldots, s.$ The Kameko squaringoperation $(\widetilde {Sq^0_*})_{(s; N)}: (\mathbb F_2\otimes_\{mathscr A}\mathcal {P}_s)_{2N+s}\Longrightarrow (\mathbb F_2\otimes_\{mathscr A}\mathcal {P}_s)_{N}$ 确实是研究不可分解的 $\mathbb F_2\otimes_\{mathscr A} 的维度的一个有价值的同态性。\已经证明这个 $(\widetilde {Sq^0_*})_{(s; N)}$ 是同态的。受我们之前的工作[J. Korean Math. Soc. \textbf{58} (2021),643-702]的启发,本文研究了在 $s = 5$ 和一般阶数 $N_d =5(2^{d} - 1) + 11 的情况下,Kameko $(\widetilde{Sq^0_*})_{(s; N_d)}$ 的内核。2^{d+1}.$ 然后,我们修正了阮克田论文[Rev. Real Acad. Cienc. Exactas Fis.Nat. Ser. A-Mat. \textbf{116}:81(2022)]中几乎所有不正确的主要结果。我们还在 SAGEMATH 中构建了几个高级算法来验证我们的结果。这些新算法为解决明确确定不可分解元 $\mathbbF_2 \otimes_\{mathscr A} 的维数和基数这一复杂任务做出了重要贡献。\的维数和基数,这个问题涉及算法方法,以前没有任何作者解决过这个问题。此外,本文还研究了第五同调转移在上述度数 $N_d.$ 中的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信