Identities for Whitehead products and infinite sums

Jeremy Brazas
{"title":"Identities for Whitehead products and infinite sums","authors":"Jeremy Brazas","doi":"arxiv-2408.10430","DOIUrl":null,"url":null,"abstract":"Whitehead products and natural infinite sums are prominent in the higher\nhomotopy groups of the $n$-dimensional infinite earring space $\\mathbb{E}_n$\nand other locally complicated Peano continua. In this paper, we derive general\nidentities for how these operations interact with each other. As an\napplication, we consider a shrinking-wedge $X$ of $(n-1)$-connected finite\nCW-complexes $X_1,X_2,X_3,\\dots$ and compute the infinite-sum closure\n$\\mathcal{W}_{2n-1}(X)$ of the set of Whitehead products $[\\alpha,\\beta]$ in\n$\\pi_{2n-1}\\left(X\\right)$ where $\\alpha,\\beta\\in\\pi_n(X)$ are represented in\nrespective sub-wedges that meet only at the basepoint. In particular, we show\nthat $\\mathcal{W}_{2n-1}(X)$ is canonically isomorphic to\n$\\prod_{j=1}^{\\infty}\\left(\\pi_{n}(X_j)\\otimes \\prod_{k>j}\\pi_n(X_k)\\right)$.\nThe insight provided by this computation motivates a conjecture about the\nisomorphism type of the elusive groups $\\pi_{2n-1}(\\mathbb{E}_n)$, $n\\geq 2$.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Whitehead products and natural infinite sums are prominent in the higher homotopy groups of the $n$-dimensional infinite earring space $\mathbb{E}_n$ and other locally complicated Peano continua. In this paper, we derive general identities for how these operations interact with each other. As an application, we consider a shrinking-wedge $X$ of $(n-1)$-connected finite CW-complexes $X_1,X_2,X_3,\dots$ and compute the infinite-sum closure $\mathcal{W}_{2n-1}(X)$ of the set of Whitehead products $[\alpha,\beta]$ in $\pi_{2n-1}\left(X\right)$ where $\alpha,\beta\in\pi_n(X)$ are represented in respective sub-wedges that meet only at the basepoint. In particular, we show that $\mathcal{W}_{2n-1}(X)$ is canonically isomorphic to $\prod_{j=1}^{\infty}\left(\pi_{n}(X_j)\otimes \prod_{k>j}\pi_n(X_k)\right)$. The insight provided by this computation motivates a conjecture about the isomorphism type of the elusive groups $\pi_{2n-1}(\mathbb{E}_n)$, $n\geq 2$.
怀特海积和无穷和的同一性
白头积和自然无限和在 $n$ 维无限耳空间 $\mathbb{E}_n$ 和其他局部复杂的皮亚诺连续体的高同调群中非常突出。在本文中,我们推导出这些运算如何相互作用的一般特性。在应用中,我们考虑由 $(n-1)$ 连接的有限 CW 复数 $X_1,X_2,X_3,\dots$组成的收缩楔 $X$,并计算白石乘积集合 $[\alpha、\beta]$在$\pi_{2n-1}\left(X\right)$中,其中$\alpha,\beta\in\pi_n(X)$表示仅在基点处相遇的子边。特别地,我们证明 $\mathcal{W}_{2n-1}(X)$ 与 $prod_{j=1}^{\infty}\left(\pi_{n}(X_j)\otimes \prod_{k>j}\pi_n(X_k)\right)$具有同构性。这个计算所提供的洞察力激发了关于难以捉摸的群 $\pi_{2n-1}(\mathbb{E}_n)$, $n\geq 2$ 的同构类型的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信