Cornering Relative Symmetry Theories

Mirjam Cvetič, Ron Donagi, Jonathan J. Heckman, Max Hübner, Ethan Torres
{"title":"Cornering Relative Symmetry Theories","authors":"Mirjam Cvetič, Ron Donagi, Jonathan J. Heckman, Max Hübner, Ethan Torres","doi":"arxiv-2408.12600","DOIUrl":null,"url":null,"abstract":"The symmetry data of a $d$-dimensional quantum field theory (QFT) can often\nbe captured in terms of a higher-dimensional symmetry topological field theory\n(SymTFT). In top down (i.e., stringy) realizations of this structure, the QFT\nin question is localized in a higher-dimensional bulk. In many cases of\ninterest, however, the associated $(d+1)$-dimensional bulk is not fully gapped\nand one must instead consider a filtration of theories to reach a gapped bulk\nin $D = d+m$ dimensions. Overall, this leads us to a nested structure of\nrelative symmetry theories which descend to coupled edge modes, with the\noriginal QFT degrees of freedom localized at a corner of this $D$-dimensional\nbulk system. We present a bottom up characterization of this structure and also\nshow how it naturally arises in a number of string-based constructions of QFTs\nwith both finite and continuous symmetries.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The symmetry data of a $d$-dimensional quantum field theory (QFT) can often be captured in terms of a higher-dimensional symmetry topological field theory (SymTFT). In top down (i.e., stringy) realizations of this structure, the QFT in question is localized in a higher-dimensional bulk. In many cases of interest, however, the associated $(d+1)$-dimensional bulk is not fully gapped and one must instead consider a filtration of theories to reach a gapped bulk in $D = d+m$ dimensions. Overall, this leads us to a nested structure of relative symmetry theories which descend to coupled edge modes, with the original QFT degrees of freedom localized at a corner of this $D$-dimensional bulk system. We present a bottom up characterization of this structure and also show how it naturally arises in a number of string-based constructions of QFTs with both finite and continuous symmetries.
转角相对对称理论
d$维量子场论(QFT)的对称数据通常可以用高维对称拓扑场论(SymTFT)来捕捉。在这种结构的自顶向下(即弦式)实现中,有关的 QFT 被定位在一个更高维的体中。然而,在许多令人感兴趣的情况下,相关的$(d+1)$维体并不是完全间隙的,我们必须考虑理论的过滤,以达到一个间隙的$D = d+m$维体。总之,这将我们引向一个相关对称理论的嵌套结构,它下降到耦合边模,而最初的 QFT 自由度则定位在这个 $D$ 维球体系的一角。我们自下而上地描述了这一结构,并展示了它是如何自然地出现在一系列基于弦的有限对称和连续对称 QFT 结构中的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信