$C_2$-Equivariant Orthogonal Calculus

Emel Yavuz
{"title":"$C_2$-Equivariant Orthogonal Calculus","authors":"Emel Yavuz","doi":"arxiv-2408.15891","DOIUrl":null,"url":null,"abstract":"In this thesis, we construct a new version of orthogonal calculus for\nfunctors $F$ from $C_2$-representations to $C_2$-spaces, where $C_2$ is the\ncyclic group of order 2. For example, the functor $BO(-)$, which sends a\n$C_2$-representation $V$ to the classifying space of its orthogonal group\n$BO(V)$. We obtain a bigraded sequence of approximations to $F$, called the\nstrongly $(p,q)$-polynomial approximations $T_{p,q}F$. The bigrading arises\nfrom the bigrading on $C_2$-representations. The homotopy fibre $D_{p,q}F$ of\nthe map from $T_{p+1,q}T_{p,q+1}F$ to $T_{p,q}F$ is such that the approximation\n$T_{p+1,q}T_{p,q+1}D_{p,q}F$ is equivalent to the functor $D_{p,q}F$ itself and\nthe approximation $T_{p,q}D_{p,q}F$ is trivial. A functor with these properties\nis called $(p,q)$-homogeneous. Via a zig-zag of Quillen equivalences, we prove\nthat $(p,q)$-homogeneous functors are fully determined by orthogonal spectra\nwith a genuine action of $C_2$ and a naive action of the orthogonal group\n$O(p,q)$.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this thesis, we construct a new version of orthogonal calculus for functors $F$ from $C_2$-representations to $C_2$-spaces, where $C_2$ is the cyclic group of order 2. For example, the functor $BO(-)$, which sends a $C_2$-representation $V$ to the classifying space of its orthogonal group $BO(V)$. We obtain a bigraded sequence of approximations to $F$, called the strongly $(p,q)$-polynomial approximations $T_{p,q}F$. The bigrading arises from the bigrading on $C_2$-representations. The homotopy fibre $D_{p,q}F$ of the map from $T_{p+1,q}T_{p,q+1}F$ to $T_{p,q}F$ is such that the approximation $T_{p+1,q}T_{p,q+1}D_{p,q}F$ is equivalent to the functor $D_{p,q}F$ itself and the approximation $T_{p,q}D_{p,q}F$ is trivial. A functor with these properties is called $(p,q)$-homogeneous. Via a zig-zag of Quillen equivalences, we prove that $(p,q)$-homogeneous functors are fully determined by orthogonal spectra with a genuine action of $C_2$ and a naive action of the orthogonal group $O(p,q)$.
C_2$-等价正交微积分
在本论文中,我们为从 $C_2$ 表示到 $C_2$ 空间的函数 $F$ 构造了一个新版本的正交微积分,其中 $C_2$ 是阶数为 2 的循环群。例如,函数$BO(-)$把$C_2$表示$V$送到其正交群$BO(V)$的分类空间。我们得到了一个近似 $F$ 的大等级序列,称为强 $(p,q)$-多项式近似 $T_{p,q}F$。大平移源于 C_2$ 表示上的大平移。从$T_{p+1,q}T_{p,q+1}F$到$T_{p,q}F$的同调纤维$D_{p,q}F$使得近似$T_{p+1,q}T_{p,q+1}D_{p,q}F$等价于函子$D_{p,q}F$本身,并且近似$T_{p,q}D_{p,q}F$是微不足道的。具有这些性质的函子称为$(p,q)$同调函子。通过奎伦等价的zig-zag,我们证明了$(p,q)$同构函子完全由具有$C_2$的真正作用和正交群$O(p,q)$的天真作用的正交谱决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信