Magnitude homology and homotopy type of metric fibrations

Yasuhiko Asao, Yu Tajima, Masahiko Yoshinaga
{"title":"Magnitude homology and homotopy type of metric fibrations","authors":"Yasuhiko Asao, Yu Tajima, Masahiko Yoshinaga","doi":"arxiv-2409.03278","DOIUrl":null,"url":null,"abstract":"In this article, we show that each two metric fibrations with a common base\nand a common fiber have isomorphic magnitude homology, and even more, the same\nmagnitude homotopy type. That can be considered as a generalization of a fact\nproved by T. Leinster that the magnitude of a metric fibration with finitely\nmany points is a product of those of the base and the fiber. We also show that\nthe definition of the magnitude homotopy type due to the second and the third\nauthors is equivalent to the geometric realization of Hepworth and Willerton's\npointed simplicial set.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we show that each two metric fibrations with a common base and a common fiber have isomorphic magnitude homology, and even more, the same magnitude homotopy type. That can be considered as a generalization of a fact proved by T. Leinster that the magnitude of a metric fibration with finitely many points is a product of those of the base and the fiber. We also show that the definition of the magnitude homotopy type due to the second and the third authors is equivalent to the geometric realization of Hepworth and Willerton's pointed simplicial set.
度量纤维的幅同调和同调类型
在本文中,我们证明了具有共同基点和共同纤维的两个度量纤度具有同构的幅同调,甚至具有相同的幅同调类型。这可以看作是 T. Leinster 所证明的一个事实的一般化,即具有有限多点的度量纤度的幅是基点和纤维的幅的乘积。我们还证明了第二位和第三位作者关于幅同调类型的定义等同于赫普沃思和威勒顿的点简集的几何实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信