Operadic right modules via the dendroidal formalism

Miguel Barata
{"title":"Operadic right modules via the dendroidal formalism","authors":"Miguel Barata","doi":"arxiv-2409.01188","DOIUrl":null,"url":null,"abstract":"In this work we study the homotopy theory of the category\n$\\mathsf{RMod}_{\\mathbf{P}}$ of right modules over a simplicial operad\n$\\mathbf{P}$ via the formalism of forest spaces $\\mathsf{fSpaces}$, as\nintroduced by Heuts, Hinich and Moerdijk. In particular, we show that, for\n$\\mathbf{P}$ is closed and $\\Sigma$-free, there exists a Quillen equivalence\nbetween the projective model structure on $\\mathsf{RMod}_{\\mathbf{P}}$, and the\ncontravariant model structure on the slice category\n$\\mathsf{fSpaces}_{/N\\mathbf{P}}$ over the dendroidal nerve of $\\mathbf{P}$. As\nan application, we comment on how this result can be used to compute derived\nmapping spaces of between operadic right modules.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we study the homotopy theory of the category $\mathsf{RMod}_{\mathbf{P}}$ of right modules over a simplicial operad $\mathbf{P}$ via the formalism of forest spaces $\mathsf{fSpaces}$, as introduced by Heuts, Hinich and Moerdijk. In particular, we show that, for $\mathbf{P}$ is closed and $\Sigma$-free, there exists a Quillen equivalence between the projective model structure on $\mathsf{RMod}_{\mathbf{P}}$, and the contravariant model structure on the slice category $\mathsf{fSpaces}_{/N\mathbf{P}}$ over the dendroidal nerve of $\mathbf{P}$. As an application, we comment on how this result can be used to compute derived mapping spaces of between operadic right modules.
通过树枝形式主义的运算右模块
在这项工作中,我们通过海厄茨(Heuts)、希尼希(Hinich)和莫尔迪克(Moerdijk)提出的森林空间形式主义 $\mathsf{fSpaces}$ 来研究简单操作数上的右模块类别$\mathsf{RMod}_{mathbf{P}}$ 的同调理论。特别是,我们证明了,当$mathbf{P}$是封闭的、无$\Sigma$时,在$mathsf{RMod}_{mathbf{P}}$上的投影模型结构与$mathbf{P}$的树枝神经上的切片类别$mathsf{fSpaces}_{/Nmathbf{P}}$上的协变模型结构之间存在奎伦等价性。作为应用,我们评论了如何用这一结果来计算操作数右模块之间的派生映射空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信