Secondary cohomology operations and the loop space cohomology

Samson Saneblidze
{"title":"Secondary cohomology operations and the loop space cohomology","authors":"Samson Saneblidze","doi":"arxiv-2409.04861","DOIUrl":null,"url":null,"abstract":"Motivated by the loop space cohomology we construct the secondary operations\non the cohomology $H^*(X; \\mathbb{Z}_p)$ to be a Hopf algebra for a simply\nconnected space $X.$ The loop space cohomology ring $H^*(\\Omega X;\n\\mathbb{Z}_p)$ is calculated in terms of generators and relations. This answers\nto A. Borel's decomposition of a Hopf algebra into a tensor product of the\nmonogenic ones in which the heights of generators are determined by means of\nthe action of the primary and secondary cohomology operations on\n$H^*(X;\\mathbb{Z}_p).$ An application for calculating of the loop space\ncohomology of the exceptional group $F_4$ is given.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the loop space cohomology we construct the secondary operations on the cohomology $H^*(X; \mathbb{Z}_p)$ to be a Hopf algebra for a simply connected space $X.$ The loop space cohomology ring $H^*(\Omega X; \mathbb{Z}_p)$ is calculated in terms of generators and relations. This answers to A. Borel's decomposition of a Hopf algebra into a tensor product of the monogenic ones in which the heights of generators are determined by means of the action of the primary and secondary cohomology operations on $H^*(X;\mathbb{Z}_p).$ An application for calculating of the loop space cohomology of the exceptional group $F_4$ is given.
二级同调运算和环空间同调
在循环空间同调的激励下,我们构建了同调$H^*(X; \mathbb{Z}_p)$的二次运算,使之成为简单连接空间$X的霍普夫代数。这回答了 A. Borel 将霍普夫代数分解为它们的张量乘积的问题,在张量乘积中,生成器的高度是通过对$H^*(X;\mathbb{Z}_p)$ 的一级和二级同调运算的作用来确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信