{"title":"Dynamic and concordance-assisted learning for risk stratification with application to Alzheimer's disease.","authors":"Wen Li,Ruosha Li,Ziding Feng,Jing Ning,","doi":"10.1093/biostatistics/kxae036","DOIUrl":null,"url":null,"abstract":"Dynamic prediction models capable of retaining accuracy by evolving over time could play a significant role for monitoring disease progression in clinical practice. In biomedical studies with long-term follow up, participants are often monitored through periodic clinical visits with repeat measurements until an occurrence of the event of interest (e.g. disease onset) or the study end. Acknowledging the dynamic nature of disease risk and clinical information contained in the longitudinal markers, we propose an innovative concordance-assisted learning algorithm to derive a real-time risk stratification score. The proposed approach bypasses the need to fit regression models, such as joint models of the longitudinal markers and time-to-event outcome, and hence enjoys the desirable property of model robustness. Simulation studies confirmed that the proposed method has satisfactory performance in dynamically monitoring the risk of developing disease and differentiating high-risk and low-risk population over time. We apply the proposed method to the Alzheimer's Disease Neuroimaging Initiative data and develop a dynamic risk score of Alzheimer's Disease for patients with mild cognitive impairment using multiple longitudinal markers and baseline prognostic factors.","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"110 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae036","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic prediction models capable of retaining accuracy by evolving over time could play a significant role for monitoring disease progression in clinical practice. In biomedical studies with long-term follow up, participants are often monitored through periodic clinical visits with repeat measurements until an occurrence of the event of interest (e.g. disease onset) or the study end. Acknowledging the dynamic nature of disease risk and clinical information contained in the longitudinal markers, we propose an innovative concordance-assisted learning algorithm to derive a real-time risk stratification score. The proposed approach bypasses the need to fit regression models, such as joint models of the longitudinal markers and time-to-event outcome, and hence enjoys the desirable property of model robustness. Simulation studies confirmed that the proposed method has satisfactory performance in dynamically monitoring the risk of developing disease and differentiating high-risk and low-risk population over time. We apply the proposed method to the Alzheimer's Disease Neuroimaging Initiative data and develop a dynamic risk score of Alzheimer's Disease for patients with mild cognitive impairment using multiple longitudinal markers and baseline prognostic factors.
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.