Bottom-up synthesis of novel cesium ferrate (Cs2FeO4) nanorods: Tailoring the structural and optical characteristics with room-temperature ferromagnetic and colossal dielectric performance
{"title":"Bottom-up synthesis of novel cesium ferrate (Cs2FeO4) nanorods: Tailoring the structural and optical characteristics with room-temperature ferromagnetic and colossal dielectric performance","authors":"Fawzy G. El Desouky","doi":"10.1016/j.nanoso.2024.101312","DOIUrl":null,"url":null,"abstract":"This paper presents a detailed protocol for the synthesis and characterization of cesium ferrate nanorods, a unique material that possesses a wide range of functionalities. These include the ability to demonstrate ferromagnetism at normal ambient temperature and the capacity to modify its structural, optical, and electrical properties. The XRD patterns specify the presence of an orthorhombic alkali ferrate phase (CsFeO), with the size of the crystals increasing as the temperature rises. Furthermore, the XPS spectra of Cs 3d, Fe 2p, and O 1 s exhibit the formation of substances due to the peak positions fluctuate in reaction to temperature variations. The nanorod-like structure and size distribution of materials can be visualized using TEM and SEM. The UV spectra of the samples indicate broad absorption bands ranging from the visible to the near infrared (IR) region. Calcination of the as-prepared CsFeO at 400 and 600 ºC lowered the optical band gap from 2.15 to 2.04 and 2.06 eV, respectively. The temperature's synergistic effect is crucial in transforming materials from a paramagnetic to a ferromagnetic phase. The colossal sample's dielectric constant, which varies from around 10 at 600 ºC to 10 and 10 in the lower frequency band, and electrical conductivity show substantial fluctuations depending on the frequency. Nanorod systems have interesting optical, dielectric, and ferromagnetic properties at room temperature that could be used in many areas, such as photocatalysis, energy storage, and spintronics.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"55 1","pages":""},"PeriodicalIF":5.4500,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.nanoso.2024.101312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a detailed protocol for the synthesis and characterization of cesium ferrate nanorods, a unique material that possesses a wide range of functionalities. These include the ability to demonstrate ferromagnetism at normal ambient temperature and the capacity to modify its structural, optical, and electrical properties. The XRD patterns specify the presence of an orthorhombic alkali ferrate phase (CsFeO), with the size of the crystals increasing as the temperature rises. Furthermore, the XPS spectra of Cs 3d, Fe 2p, and O 1 s exhibit the formation of substances due to the peak positions fluctuate in reaction to temperature variations. The nanorod-like structure and size distribution of materials can be visualized using TEM and SEM. The UV spectra of the samples indicate broad absorption bands ranging from the visible to the near infrared (IR) region. Calcination of the as-prepared CsFeO at 400 and 600 ºC lowered the optical band gap from 2.15 to 2.04 and 2.06 eV, respectively. The temperature's synergistic effect is crucial in transforming materials from a paramagnetic to a ferromagnetic phase. The colossal sample's dielectric constant, which varies from around 10 at 600 ºC to 10 and 10 in the lower frequency band, and electrical conductivity show substantial fluctuations depending on the frequency. Nanorod systems have interesting optical, dielectric, and ferromagnetic properties at room temperature that could be used in many areas, such as photocatalysis, energy storage, and spintronics.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .