Optimizing hydrothermal carbonization for enhanced energy production from algal biomass with high moisture content

Kanta Nakano, Numan Luthfi, Takashi Fukushima, Kenji Takisawa
{"title":"Optimizing hydrothermal carbonization for enhanced energy production from algal biomass with high moisture content","authors":"Kanta Nakano, Numan Luthfi, Takashi Fukushima, Kenji Takisawa","doi":"10.1002/cjce.25457","DOIUrl":null,"url":null,"abstract":"Recently, the depletion of fossil fuels has become an issue, prompting the search for sustainable alternatives. Algal biomass has gained considerable attention as a promising renewable energy source because of its high production efficiency and adaptability to external environment. However, its high‐moisture content escalates the energy requirement during the thermal drying process in algal biomass production. Thus, we proposed a new energy production system using hydrothermal carbonization, which requires no pretreatment even for high moisture content biomass, making it compatible with such materials. Herein, we investigated the decrease in moisture content of algal biomass through hydrothermal carbonization and its effect on the energy production and energy balance of algal biomass. The results showed that hydrothermal carbonization at 240°C for 3 h produced hydrochar with a moisture content of 34.6%. It was found that it was due to changes in surface structures, such as CH, CO, and OH functional groups, using scanning electron microscopy (SEM) and Fourier transform infrared (FT‐IR) analysis. However, the greatest reduction in production energy, 45%, was achieved at 240°C for 4 h. The optimal energy balance was obtained for hydrothermal carbonization at 220°C for 4 h, for which energy production was 2.7 times more efficient than that achieved by conventional methods.","PeriodicalId":501204,"journal":{"name":"The Canadian Journal of Chemical Engineering","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjce.25457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the depletion of fossil fuels has become an issue, prompting the search for sustainable alternatives. Algal biomass has gained considerable attention as a promising renewable energy source because of its high production efficiency and adaptability to external environment. However, its high‐moisture content escalates the energy requirement during the thermal drying process in algal biomass production. Thus, we proposed a new energy production system using hydrothermal carbonization, which requires no pretreatment even for high moisture content biomass, making it compatible with such materials. Herein, we investigated the decrease in moisture content of algal biomass through hydrothermal carbonization and its effect on the energy production and energy balance of algal biomass. The results showed that hydrothermal carbonization at 240°C for 3 h produced hydrochar with a moisture content of 34.6%. It was found that it was due to changes in surface structures, such as CH, CO, and OH functional groups, using scanning electron microscopy (SEM) and Fourier transform infrared (FT‐IR) analysis. However, the greatest reduction in production energy, 45%, was achieved at 240°C for 4 h. The optimal energy balance was obtained for hydrothermal carbonization at 220°C for 4 h, for which energy production was 2.7 times more efficient than that achieved by conventional methods.
优化水热碳化技术,提高高含水量藻类生物质的能源产量
近来,化石燃料的枯竭已成为一个问题,促使人们寻找可持续的替代能源。藻类生物质作为一种前景广阔的可再生能源,因其生产效率高、对外部环境适应性强而备受关注。然而,藻类生物质含水量高,在热干燥过程中对能源的需求也随之增加。因此,我们提出了一种利用水热碳化技术的新型能源生产系统,该系统即使对高水分含量的生物质也无需进行预处理,因此与此类材料兼容。在此,我们研究了通过水热碳化降低海藻生物质含水量及其对海藻生物质能源生产和能源平衡的影响。结果表明,240°C 水热碳化 3 小时产生的水炭含水量为 34.6%。利用扫描电子显微镜(SEM)和傅立叶变换红外(FT-IR)分析发现,这是由于表面结构发生了变化,如CH、CO和OH官能团。水热碳化法在 220°C 下进行 4 小时可获得最佳能量平衡,其能量生产效率是传统方法的 2.7 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信