{"title":"Fuzzy averaging level control for tight product quality control","authors":"Aayush Gupta, Prakhar Srivastava, Nitin Kaistha","doi":"10.1002/cjce.25466","DOIUrl":null,"url":null,"abstract":"<p>This work develops a fuzzy averaging level controller (ALC) to mitigate flow variability while avoiding high and low level alarm limit breaches. Comparison with proportional (P) and proportional integral (PI) level controllers and their non-linear variants demonstrates the fuzzy controller to be highly effective in mitigating flow transients for low and moderate size flow disturbances. The performance is comparable for large disturbances. Application of the developed fuzzy ALC to a ternary benzene-toluene-xylene direct split separation scheme as well as the separation section of a conventional cumene process demonstrates significantly superior product quality control due to flow transient variability mitigation. The product quality control variability is reduced by up to 1.5 times. The developed fuzzy ALC is therefore suitable for plant-wide control applications.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"103 3","pages":"1295-1308"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25466","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work develops a fuzzy averaging level controller (ALC) to mitigate flow variability while avoiding high and low level alarm limit breaches. Comparison with proportional (P) and proportional integral (PI) level controllers and their non-linear variants demonstrates the fuzzy controller to be highly effective in mitigating flow transients for low and moderate size flow disturbances. The performance is comparable for large disturbances. Application of the developed fuzzy ALC to a ternary benzene-toluene-xylene direct split separation scheme as well as the separation section of a conventional cumene process demonstrates significantly superior product quality control due to flow transient variability mitigation. The product quality control variability is reduced by up to 1.5 times. The developed fuzzy ALC is therefore suitable for plant-wide control applications.
期刊介绍:
The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.