DBFact applied to minimum variance performance assessment for nonminimum phase multivariate systems from closed‐loop data

Maria Lima, Jorge Otávio Trierweiler, Marcelo Farenzena
{"title":"DBFact applied to minimum variance performance assessment for nonminimum phase multivariate systems from closed‐loop data","authors":"Maria Lima, Jorge Otávio Trierweiler, Marcelo Farenzena","doi":"10.1002/cjce.25492","DOIUrl":null,"url":null,"abstract":"This paper introduces an approach for determining a minimum variance control (MVC) benchmark for nonminimum phase (NMP) multi‐input multi‐output (MIMO) systems using closed‐loop operational data. The MVC benchmark is derived from the MVC law of DBFact factorization introduced by Lima, Trierweiler, and Farenzena. Unlike other factorization methods, DBFact offers advantages such as non‐iterative computation and ensuring internal stability of the MVC law. This approach considers the inherent directionality of NMP MIMO systems, enhancing the reliability of the control performance index. However, the original method relies on prior knowledge of the process model. To overcome this limitation, this paper proposes a method for calculating the MVC benchmark when prior knowledge is absent. It introduces a MIMO system identification strategy employing minimally invasive signal tests. The methodology is evaluated across various control conditions using a quadruple‐tank plant with additional time delays. The study emphasizes the importance of directionality in assessing MIMO system performance, particularly in evaluating individual loop performances. Results demonstrate the identification procedure's effectiveness in accurately calculating the proposed MVC benchmark, even with a mere 1% increase in output variance considered.","PeriodicalId":501204,"journal":{"name":"The Canadian Journal of Chemical Engineering","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjce.25492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an approach for determining a minimum variance control (MVC) benchmark for nonminimum phase (NMP) multi‐input multi‐output (MIMO) systems using closed‐loop operational data. The MVC benchmark is derived from the MVC law of DBFact factorization introduced by Lima, Trierweiler, and Farenzena. Unlike other factorization methods, DBFact offers advantages such as non‐iterative computation and ensuring internal stability of the MVC law. This approach considers the inherent directionality of NMP MIMO systems, enhancing the reliability of the control performance index. However, the original method relies on prior knowledge of the process model. To overcome this limitation, this paper proposes a method for calculating the MVC benchmark when prior knowledge is absent. It introduces a MIMO system identification strategy employing minimally invasive signal tests. The methodology is evaluated across various control conditions using a quadruple‐tank plant with additional time delays. The study emphasizes the importance of directionality in assessing MIMO system performance, particularly in evaluating individual loop performances. Results demonstrate the identification procedure's effectiveness in accurately calculating the proposed MVC benchmark, even with a mere 1% increase in output variance considered.
DBFact 应用于根据闭环数据对非最小相位多变量系统进行最小方差性能评估
本文介绍了一种利用闭环运行数据确定非最小相位(NMP)多输入多输出(MIMO)系统最小方差控制(MVC)基准的方法。MVC 基准源自 Lima、Trierweiler 和 Farenzena 提出的 DBFact 因式分解 MVC 法。与其他因式分解方法不同,DBFact 具有非迭代计算和确保 MVC 法则内部稳定性等优势。这种方法考虑了 NMP MIMO 系统固有的方向性,提高了控制性能指标的可靠性。然而,原始方法依赖于过程模型的先验知识。为了克服这一局限性,本文提出了一种在缺乏先验知识的情况下计算 MVC 基准的方法。它介绍了一种采用微创信号测试的 MIMO 系统识别策略。该方法通过一个具有额外时间延迟的四重罐工厂,在各种控制条件下进行了评估。研究强调了方向性在评估 MIMO 系统性能中的重要性,尤其是在评估单个环路性能时。结果表明,即使考虑的输出方差仅增加 1%,识别程序也能有效准确地计算所提出的 MVC 基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信