Gonzalo Velazquez, Guadalupe Mendez‐Montealvo, Eduardo Morales‐Sanchez, Israel Sifuentes‐Nieves, Rodrigo Velazquez‐Castillo, Adrian Soler
{"title":"Autoclaved Starch: Structure and Functionality Relationship in a Matrix With the Same Contribution of Amylose and Amylopectin","authors":"Gonzalo Velazquez, Guadalupe Mendez‐Montealvo, Eduardo Morales‐Sanchez, Israel Sifuentes‐Nieves, Rodrigo Velazquez‐Castillo, Adrian Soler","doi":"10.1002/bip.23624","DOIUrl":null,"url":null,"abstract":"The rational use of autoclaved starches in food applications is difficult because there is a lack of information on their structure–functionality relationship. The novelty of this research relies on disclosing such an association. Hylon V starch was autoclaved at 105, 120, and 135°C to investigate its crystalline and double‐helical features and its relationship with functionality. In autoclaved Hylon V starch, interactions of amylopectin and amylose improved while the crystalline regions decreased. The degree of double helices (DD) decreased after autoclaving at 105°C and the degree of order (DO) increased after treatment at 120 and 135°C. The water solubility index (WSI) (4.63–6.38%) and swelling power (SP) (4.39–7.1 g/g) increased when the temperature increased. On the other hand, water (103.49–225.01%) and oil (61.91–94.53%) holding capacity (WHC and OHC, respectively) increased after autoclaving treatment, although the values decreased with the treatment intensity. The functional properties were affected when the structure changed as a function of the treatment temperatures. PCA analysis showed that WSI and SP of autoclaved Hylon V starch were associated with a high DD, with better compaction, and with stronger amylopectin–amylose interactions. WHC and OHC were associated with better crystallinity, stronger interactions of amylopectin and amylose, and heterogeneous double‐helical crystallites. These findings are useful for understanding the structure–functionality relationship of autoclaved Hylon V starch and pave the way for future research regarding the effects of its incorporation on the properties of food matrices such as bread, yogurt, cakes, and pudding.","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"109 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bip.23624","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The rational use of autoclaved starches in food applications is difficult because there is a lack of information on their structure–functionality relationship. The novelty of this research relies on disclosing such an association. Hylon V starch was autoclaved at 105, 120, and 135°C to investigate its crystalline and double‐helical features and its relationship with functionality. In autoclaved Hylon V starch, interactions of amylopectin and amylose improved while the crystalline regions decreased. The degree of double helices (DD) decreased after autoclaving at 105°C and the degree of order (DO) increased after treatment at 120 and 135°C. The water solubility index (WSI) (4.63–6.38%) and swelling power (SP) (4.39–7.1 g/g) increased when the temperature increased. On the other hand, water (103.49–225.01%) and oil (61.91–94.53%) holding capacity (WHC and OHC, respectively) increased after autoclaving treatment, although the values decreased with the treatment intensity. The functional properties were affected when the structure changed as a function of the treatment temperatures. PCA analysis showed that WSI and SP of autoclaved Hylon V starch were associated with a high DD, with better compaction, and with stronger amylopectin–amylose interactions. WHC and OHC were associated with better crystallinity, stronger interactions of amylopectin and amylose, and heterogeneous double‐helical crystallites. These findings are useful for understanding the structure–functionality relationship of autoclaved Hylon V starch and pave the way for future research regarding the effects of its incorporation on the properties of food matrices such as bread, yogurt, cakes, and pudding.
期刊介绍:
Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.