Monitoring Terrestrial Water Storage Using GRACE/GRACE-FO Data over India: A Review

IF 1.7 4区 工程技术 Q3 ENGINEERING, CIVIL
Maniranjan Kumar, Pramod Soni, Debshri Swargiary
{"title":"Monitoring Terrestrial Water Storage Using GRACE/GRACE-FO Data over India: A Review","authors":"Maniranjan Kumar, Pramod Soni, Debshri Swargiary","doi":"10.1007/s40996-024-01623-2","DOIUrl":null,"url":null,"abstract":"<p>The gravity recovery and climate experiment (GRACE) satellite mission, which was active between March 2002 and June 2017 and its successor, the GRACE follow-on (GRACE-FO), which has been in operation since May 2018, marked the pioneering remote sensing missions to track changes in terrestrial water storage (TWS) across time. TWS encompasses the cumulative water masses found in the Earth’s soil column, including elements like surface water, soil moisture, snow water equivalent and groundwater (GW). Over the course of the last 20 years, there has been extensive research conducted on fluctuations in the mass of different Elements of the Earth's system, such as the hydrosphere, seas, cryosphere, and solid Earth, utilizing time-varying gravity measurements from the GRACE/GRACE-FO missions. This technology can be utilised to improve monitoring results of large-scale spatial and temporal variations in the water cycle patterns. A review of recent GRACE data used for monitoring terrestrial hydrology over India is provided in this work. The primary applications of GRACE data in the context of large-scale terrestrial hydrological monitoring, such as assessing alterations in terrestrial water storage, involve: retrieving the hydrological components of GW, analysing droughts, floods, land subsidence and determining how glaciers are responding to climate change, have recently been described. India has the tenth position globally in the utilization of GRACE data. Therefore, more investigation is required to completely understand the potential of GRACE data. It was found through a review of the literature that several hydrological models have not yet been thoroughly examined with GRACE data. Furthermore, small river basins can be analysed at a fine scale with downscale GRACE data using machine learning/artificial intelligence. In the Indian context, no research has been conducted to estimate river discharge by using GRACE data.</p>","PeriodicalId":14550,"journal":{"name":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","volume":"23 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40996-024-01623-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The gravity recovery and climate experiment (GRACE) satellite mission, which was active between March 2002 and June 2017 and its successor, the GRACE follow-on (GRACE-FO), which has been in operation since May 2018, marked the pioneering remote sensing missions to track changes in terrestrial water storage (TWS) across time. TWS encompasses the cumulative water masses found in the Earth’s soil column, including elements like surface water, soil moisture, snow water equivalent and groundwater (GW). Over the course of the last 20 years, there has been extensive research conducted on fluctuations in the mass of different Elements of the Earth's system, such as the hydrosphere, seas, cryosphere, and solid Earth, utilizing time-varying gravity measurements from the GRACE/GRACE-FO missions. This technology can be utilised to improve monitoring results of large-scale spatial and temporal variations in the water cycle patterns. A review of recent GRACE data used for monitoring terrestrial hydrology over India is provided in this work. The primary applications of GRACE data in the context of large-scale terrestrial hydrological monitoring, such as assessing alterations in terrestrial water storage, involve: retrieving the hydrological components of GW, analysing droughts, floods, land subsidence and determining how glaciers are responding to climate change, have recently been described. India has the tenth position globally in the utilization of GRACE data. Therefore, more investigation is required to completely understand the potential of GRACE data. It was found through a review of the literature that several hydrological models have not yet been thoroughly examined with GRACE data. Furthermore, small river basins can be analysed at a fine scale with downscale GRACE data using machine learning/artificial intelligence. In the Indian context, no research has been conducted to estimate river discharge by using GRACE data.

Abstract Image

利用印度上空的 GRACE/GRACE-FO 数据监测陆地蓄水:综述
2002年3月至2017年6月期间执行的重力恢复和气候实验(GRACE)卫星任务及其后续任务(GRACE-FO)自2018年5月起开始运行,标志着跟踪陆地储水量(TWS)跨时空变化的遥感任务的开创。陆地储水(TWS)包括地球土壤柱中的累积水团,包括地表水、土壤水分、雪水当量和地下水(GW)等要素。在过去 20 年中,利用 GRACE/GRACE-FO 任务提供的时变重力测量数据,对地球系统不同要素(如水圈、海洋、冰冻圈和固体地球)的质量波动进行了大量研究。这项技术可用于改进对水循环模式大尺度空间和时间变化的监测结果。本工作回顾了最近用于监测印度陆地水文的 GRACE 数据。最近介绍了 GRACE 数据在大尺度陆地水文监测方面的主要应用,如评估陆地储水的变化,涉及:检索全球大气环流的水文成分,分析干旱、洪水、土地沉降,以及确定冰川如何应对气候变化。印度在全球大气环 境卫星数据利用方面居全球第十位。因此,需要进行更多的调查,以全面了解全球资源环境行动数据的潜力。通过查阅文献发现,一些水文模型尚未利用 GRACE 数据进行彻底研究。此外,还可以利用机器学习/人工智能技术,利用 GRACE 的降尺度数据对小流域进行精细分析。在印度,尚未开展过利用全球资源环境卫星数据估算河流排放量的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
11.80%
发文量
203
期刊介绍: The aim of the Iranian Journal of Science and Technology is to foster the growth of scientific research among Iranian engineers and scientists and to provide a medium by means of which the fruits of these researches may be brought to the attention of the world’s civil Engineering communities. This transaction focuses on all aspects of Civil Engineering and will accept the original research contributions (previously unpublished) from all areas of established engineering disciplines. The papers may be theoretical, experimental or both. The journal publishes original papers within the broad field of civil engineering which include, but are not limited to, the following: -Structural engineering- Earthquake engineering- Concrete engineering- Construction management- Steel structures- Engineering mechanics- Water resources engineering- Hydraulic engineering- Hydraulic structures- Environmental engineering- Soil mechanics- Foundation engineering- Geotechnical engineering- Transportation engineering- Surveying and geomatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信