{"title":"Monitoring Terrestrial Water Storage Using GRACE/GRACE-FO Data over India: A Review","authors":"Maniranjan Kumar, Pramod Soni, Debshri Swargiary","doi":"10.1007/s40996-024-01623-2","DOIUrl":null,"url":null,"abstract":"<p>The gravity recovery and climate experiment (GRACE) satellite mission, which was active between March 2002 and June 2017 and its successor, the GRACE follow-on (GRACE-FO), which has been in operation since May 2018, marked the pioneering remote sensing missions to track changes in terrestrial water storage (TWS) across time. TWS encompasses the cumulative water masses found in the Earth’s soil column, including elements like surface water, soil moisture, snow water equivalent and groundwater (GW). Over the course of the last 20 years, there has been extensive research conducted on fluctuations in the mass of different Elements of the Earth's system, such as the hydrosphere, seas, cryosphere, and solid Earth, utilizing time-varying gravity measurements from the GRACE/GRACE-FO missions. This technology can be utilised to improve monitoring results of large-scale spatial and temporal variations in the water cycle patterns. A review of recent GRACE data used for monitoring terrestrial hydrology over India is provided in this work. The primary applications of GRACE data in the context of large-scale terrestrial hydrological monitoring, such as assessing alterations in terrestrial water storage, involve: retrieving the hydrological components of GW, analysing droughts, floods, land subsidence and determining how glaciers are responding to climate change, have recently been described. India has the tenth position globally in the utilization of GRACE data. Therefore, more investigation is required to completely understand the potential of GRACE data. It was found through a review of the literature that several hydrological models have not yet been thoroughly examined with GRACE data. Furthermore, small river basins can be analysed at a fine scale with downscale GRACE data using machine learning/artificial intelligence. In the Indian context, no research has been conducted to estimate river discharge by using GRACE data.</p>","PeriodicalId":14550,"journal":{"name":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40996-024-01623-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The gravity recovery and climate experiment (GRACE) satellite mission, which was active between March 2002 and June 2017 and its successor, the GRACE follow-on (GRACE-FO), which has been in operation since May 2018, marked the pioneering remote sensing missions to track changes in terrestrial water storage (TWS) across time. TWS encompasses the cumulative water masses found in the Earth’s soil column, including elements like surface water, soil moisture, snow water equivalent and groundwater (GW). Over the course of the last 20 years, there has been extensive research conducted on fluctuations in the mass of different Elements of the Earth's system, such as the hydrosphere, seas, cryosphere, and solid Earth, utilizing time-varying gravity measurements from the GRACE/GRACE-FO missions. This technology can be utilised to improve monitoring results of large-scale spatial and temporal variations in the water cycle patterns. A review of recent GRACE data used for monitoring terrestrial hydrology over India is provided in this work. The primary applications of GRACE data in the context of large-scale terrestrial hydrological monitoring, such as assessing alterations in terrestrial water storage, involve: retrieving the hydrological components of GW, analysing droughts, floods, land subsidence and determining how glaciers are responding to climate change, have recently been described. India has the tenth position globally in the utilization of GRACE data. Therefore, more investigation is required to completely understand the potential of GRACE data. It was found through a review of the literature that several hydrological models have not yet been thoroughly examined with GRACE data. Furthermore, small river basins can be analysed at a fine scale with downscale GRACE data using machine learning/artificial intelligence. In the Indian context, no research has been conducted to estimate river discharge by using GRACE data.
期刊介绍:
The aim of the Iranian Journal of Science and Technology is to foster the growth of scientific research among Iranian engineers and scientists and to provide a medium by means of which the fruits of these researches may be brought to the attention of the world’s civil Engineering communities. This transaction focuses on all aspects of Civil Engineering
and will accept the original research contributions (previously unpublished) from all areas of established engineering disciplines. The papers may be theoretical, experimental or both. The journal publishes original papers within the broad field of civil engineering which include, but are not limited to, the following:
-Structural engineering-
Earthquake engineering-
Concrete engineering-
Construction management-
Steel structures-
Engineering mechanics-
Water resources engineering-
Hydraulic engineering-
Hydraulic structures-
Environmental engineering-
Soil mechanics-
Foundation engineering-
Geotechnical engineering-
Transportation engineering-
Surveying and geomatics.