Rajaa Diany, Said Kerraj, Abdelkhalk Aboulouard, Asad Syed, Abdellah Zeroual, Ali H. Bahkali, Mohamed El Idrissi, Mohammed Salah, Abdessamad Tounsi
{"title":"Enhancing dye sensitized solar cells performance through quinoxaline based organic dye sensitizers","authors":"Rajaa Diany, Said Kerraj, Abdelkhalk Aboulouard, Asad Syed, Abdellah Zeroual, Ali H. Bahkali, Mohamed El Idrissi, Mohammed Salah, Abdessamad Tounsi","doi":"10.1007/s10825-024-02211-3","DOIUrl":null,"url":null,"abstract":"<div><p>We present the characterization of seven newly developed organic dyes tailored for application in dye-sensitized solar cells (DSSCs). At the core of their structures is 8,10-di(thiophen-2-yl) trithieno[3,4-b:3′,2′-f:2″,3″-h] quinoxaline, serving as the electron-donor group across all dyes. Employing density functional theory (DFT) and time-dependent DFT (TD-DFT) techniques with the CAM-B3LYP level and 6-31G(d,p) basis set, we delved into molecular structures, frontier molecular orbitals (FMOs), and various electronic chemical properties. This investigation is aimed at unraveling their ultraviolet–visible (UV–Vis) absorption properties, electron injection free energy, and global hardness (<i>η</i>), electronegativity (<i>χ</i>), and chemical potential (<i>µ</i>). These insights shed light on the stability and potential utility of these dyes as sensitizers in DSSCs. Furthermore, computation and discussion of the open-circuit voltage (<span>\\({V}_{OC}\\)</span>) underscored the promising nature of these seven new organic dyes with D-A molecules, positioning them as strong contenders for DSSC applications, all anchored around 8,10-di(thiophen-2-yl) trithieno[3,4-b:3′,2′-f:2',3″-h] quinoxaline as the electron-donor group.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 6","pages":"1195 - 1208"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02211-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We present the characterization of seven newly developed organic dyes tailored for application in dye-sensitized solar cells (DSSCs). At the core of their structures is 8,10-di(thiophen-2-yl) trithieno[3,4-b:3′,2′-f:2″,3″-h] quinoxaline, serving as the electron-donor group across all dyes. Employing density functional theory (DFT) and time-dependent DFT (TD-DFT) techniques with the CAM-B3LYP level and 6-31G(d,p) basis set, we delved into molecular structures, frontier molecular orbitals (FMOs), and various electronic chemical properties. This investigation is aimed at unraveling their ultraviolet–visible (UV–Vis) absorption properties, electron injection free energy, and global hardness (η), electronegativity (χ), and chemical potential (µ). These insights shed light on the stability and potential utility of these dyes as sensitizers in DSSCs. Furthermore, computation and discussion of the open-circuit voltage (\({V}_{OC}\)) underscored the promising nature of these seven new organic dyes with D-A molecules, positioning them as strong contenders for DSSC applications, all anchored around 8,10-di(thiophen-2-yl) trithieno[3,4-b:3′,2′-f:2',3″-h] quinoxaline as the electron-donor group.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.