{"title":"Effects of negative hydroxyl ions at the SnO2/perovskite layer interface on the performance of perovskite solar cells","authors":"Mehdi Banihashemi, Alireza Kashani Nia","doi":"10.1007/s10825-024-02212-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we studied the effects of negative hydroxyl ions at the SnO<sub>2</sub>/perovskite layer interface with respect to the performance of perovskite solar cells (PSCs). We considered a layer of 1 nm thickness, containing fixed negative ions, at the SnO<sub>2</sub>/perovskite layer interface. The density of the ions was set to 7 × 10<sup>19</sup> cm<sup>−3</sup> in our simulations. To maintain charge neutrality in the SnO2 electron transport layer (ETL), we calculated the number of negative ions in the 1-nm-thick layer and added the same number of positive ions to the remaining part of the ETL. According to our simulation results, the negative ions increased the internal potential drop, reducing the open-circuit voltage of the perovskite solar cell from 0.99 to 0.88 V. On the other hand, the negative non-mobile hydroxyl ions at the interface absorbed some of the mobile positive ions of the perovskite layer, which increased the hysteresis index from 0.177% to 0.707%.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 6","pages":"1162 - 1169"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02212-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we studied the effects of negative hydroxyl ions at the SnO2/perovskite layer interface with respect to the performance of perovskite solar cells (PSCs). We considered a layer of 1 nm thickness, containing fixed negative ions, at the SnO2/perovskite layer interface. The density of the ions was set to 7 × 1019 cm−3 in our simulations. To maintain charge neutrality in the SnO2 electron transport layer (ETL), we calculated the number of negative ions in the 1-nm-thick layer and added the same number of positive ions to the remaining part of the ETL. According to our simulation results, the negative ions increased the internal potential drop, reducing the open-circuit voltage of the perovskite solar cell from 0.99 to 0.88 V. On the other hand, the negative non-mobile hydroxyl ions at the interface absorbed some of the mobile positive ions of the perovskite layer, which increased the hysteresis index from 0.177% to 0.707%.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.