Two Infinite Families of Quaternary Codes

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yansheng Wu;Bowen Li;Weibei Fan;Fu Xiao
{"title":"Two Infinite Families of Quaternary Codes","authors":"Yansheng Wu;Bowen Li;Weibei Fan;Fu Xiao","doi":"10.1109/TIT.2024.3454959","DOIUrl":null,"url":null,"abstract":"Recently, Hyun et al. have utilized simplicial complexes to construct several infinite families of binary minimal and optimal linear codes. Building upon their work, we draw inspiration and extend their research by constructing codes over the ring \n<inline-formula> <tex-math>$\\mathbb {Z}_{4}$ </tex-math></inline-formula>\n with the aid of simplicial complexes. In this paper, we present two infinite families of quaternary codes, one of which is linear while the other is nonlinear. We analyze the Lee weight distributions of the resulting quaternary codes and compare them with the existing database of \n<inline-formula> <tex-math>$\\mathbb {Z}_{4}$ </tex-math></inline-formula>\n codes. Our findings reveal the discovery of several new quaternary codes. Furthermore, we also provide two classes of binary codes that can be obtained from these quaternary codes using the Gray map.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 12","pages":"8723-8733"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10666694/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, Hyun et al. have utilized simplicial complexes to construct several infinite families of binary minimal and optimal linear codes. Building upon their work, we draw inspiration and extend their research by constructing codes over the ring $\mathbb {Z}_{4}$ with the aid of simplicial complexes. In this paper, we present two infinite families of quaternary codes, one of which is linear while the other is nonlinear. We analyze the Lee weight distributions of the resulting quaternary codes and compare them with the existing database of $\mathbb {Z}_{4}$ codes. Our findings reveal the discovery of several new quaternary codes. Furthermore, we also provide two classes of binary codes that can be obtained from these quaternary codes using the Gray map.
四元码的两个无穷族
最近,Hyun 等人利用简单复数构建了多个二进制最小和最优线性编码的无穷族。在他们工作的基础上,我们借鉴并扩展了他们的研究,借助单纯复数构造了环 $\mathbb {Z}_{4}$ 上的编码。在本文中,我们提出了两个无限的四元编码系列,其中一个是线性编码,另一个是非线性编码。我们分析了所得到的四元码的李权重分布,并将它们与现有的 $\mathbb {Z}_{4}$ 码数据库进行了比较。我们的发现揭示了几种新的四元码。此外,我们还提供了两类二进制码,可以利用格雷映射从这些四元码中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信