The First Achievement of a Given Level by a Random Process

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sergei L. Semakov
{"title":"The First Achievement of a Given Level by a Random Process","authors":"Sergei L. Semakov","doi":"10.1109/TIT.2024.3444043","DOIUrl":null,"url":null,"abstract":"We propose a scheme for finding the probabilities of events related to crossings of a level by a random process. Using this scheme, we estimate the probability that the first achievement of a given level by the component \n<inline-formula> <tex-math>$y_{1}(x)$ </tex-math></inline-formula>\n of an n-dimensional continuous process \n<inline-formula> <tex-math>${\\mathbf { y}}(x)\\!=\\!\\{y_{1}(x),\\ldots,y_{n}(x)\\}$ </tex-math></inline-formula>\n occurs at some moment \n<inline-formula> <tex-math>$x^{*}$ </tex-math></inline-formula>\n from a given interval \n<inline-formula> <tex-math>$(x',x'')$ </tex-math></inline-formula>\n and, at this moment \n<inline-formula> <tex-math>$x^{*}$ </tex-math></inline-formula>\n, the other components \n<inline-formula> <tex-math>$y_{2}(x^{*}),\\ldots,y_{n}(x^{*})$ </tex-math></inline-formula>\n satisfy given constraints. The need for estimating the above-mentioned probability arises, in particular, in the problems of ensuring the safety of an aircraft landing.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 10","pages":"7162-7178"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10637452/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a scheme for finding the probabilities of events related to crossings of a level by a random process. Using this scheme, we estimate the probability that the first achievement of a given level by the component $y_{1}(x)$ of an n-dimensional continuous process ${\mathbf { y}}(x)\!=\!\{y_{1}(x),\ldots,y_{n}(x)\}$ occurs at some moment $x^{*}$ from a given interval $(x',x'')$ and, at this moment $x^{*}$ , the other components $y_{2}(x^{*}),\ldots,y_{n}(x^{*})$ satisfy given constraints. The need for estimating the above-mentioned probability arises, in particular, in the problems of ensuring the safety of an aircraft landing.
通过随机过程首次达到给定水平
我们提出了一种方法,用于计算与随机过程越级相关的事件概率。利用这个方案,我们可以估算出一个 n 维连续过程 ${mathbf { y}}(x)\!=\ 的分量 $y_{1}(x)$ 首次达到给定水平的概率!\{y_{1}(x),\ldots,y_{n}(x)\}$发生在给定区间$(x',x''')$的某个时刻$x^{*}$,并且在这个时刻$x^{*}$,其他分量$y_{2}(x^{*}),\ldots,y_{n}(x^{*})$满足给定的约束条件。在确保飞机着陆安全的问题中,尤其需要估算上述概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信