Small Error Algorithms for Tropical Group Testing

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Vivekanand Paligadu;Oliver Johnson;Matthew Aldridge
{"title":"Small Error Algorithms for Tropical Group Testing","authors":"Vivekanand Paligadu;Oliver Johnson;Matthew Aldridge","doi":"10.1109/TIT.2024.3445271","DOIUrl":null,"url":null,"abstract":"We consider a version of the classical group testing problem motivated by PCR testing for COVID-19. In the so-called tropical group testing model, the outcome of a test is the lowest cycle threshold (Ct) level of the individuals pooled within it, rather than a simple binary indicator variable. We introduce the tropical counterparts of three classical non-adaptive algorithms (COMP, DD and SCOMP), and analyse their behaviour through both simulations and bounds on error probabilities. By comparing the results of the tropical and classical algorithms, we gain insight into the extra information provided by learning the outcomes (Ct levels) of the tests. We show that in a limiting regime the tropical COMP algorithm requires as many tests as its classical counterpart, but that for sufficiently dense problems tropical DD can recover more information with fewer tests, and can be viewed as essentially optimal in certain regimes.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 10","pages":"7232-7250"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10638661/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a version of the classical group testing problem motivated by PCR testing for COVID-19. In the so-called tropical group testing model, the outcome of a test is the lowest cycle threshold (Ct) level of the individuals pooled within it, rather than a simple binary indicator variable. We introduce the tropical counterparts of three classical non-adaptive algorithms (COMP, DD and SCOMP), and analyse their behaviour through both simulations and bounds on error probabilities. By comparing the results of the tropical and classical algorithms, we gain insight into the extra information provided by learning the outcomes (Ct levels) of the tests. We show that in a limiting regime the tropical COMP algorithm requires as many tests as its classical counterpart, but that for sufficiently dense problems tropical DD can recover more information with fewer tests, and can be viewed as essentially optimal in certain regimes.
热带组测试的小误差算法
我们考虑的是由 COVID-19 的 PCR 检测引发的经典分组检测问题的一个版本。在所谓的热带组测试模型中,测试结果是集合在其中的个体的最低周期阈值(Ct)水平,而不是简单的二进制指标变量。我们介绍了三种经典非适应性算法(COMP、DD 和 SCOMP)的热带对应算法,并通过模拟和误差概率界限分析了它们的行为。通过比较热带算法和经典算法的结果,我们深入了解了学习测试结果(Ct 水平)所提供的额外信息。我们的研究表明,在极限状态下,热带 COMP 算法与经典算法需要同样多的测试,但对于足够密集的问题,热带 DD 算法可以用更少的测试恢复更多的信息,在某些状态下,热带 COMP 算法基本上可以被视为最优算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信