{"title":"Small Error Algorithms for Tropical Group Testing","authors":"Vivekanand Paligadu;Oliver Johnson;Matthew Aldridge","doi":"10.1109/TIT.2024.3445271","DOIUrl":null,"url":null,"abstract":"We consider a version of the classical group testing problem motivated by PCR testing for COVID-19. In the so-called tropical group testing model, the outcome of a test is the lowest cycle threshold (Ct) level of the individuals pooled within it, rather than a simple binary indicator variable. We introduce the tropical counterparts of three classical non-adaptive algorithms (COMP, DD and SCOMP), and analyse their behaviour through both simulations and bounds on error probabilities. By comparing the results of the tropical and classical algorithms, we gain insight into the extra information provided by learning the outcomes (Ct levels) of the tests. We show that in a limiting regime the tropical COMP algorithm requires as many tests as its classical counterpart, but that for sufficiently dense problems tropical DD can recover more information with fewer tests, and can be viewed as essentially optimal in certain regimes.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 10","pages":"7232-7250"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10638661/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a version of the classical group testing problem motivated by PCR testing for COVID-19. In the so-called tropical group testing model, the outcome of a test is the lowest cycle threshold (Ct) level of the individuals pooled within it, rather than a simple binary indicator variable. We introduce the tropical counterparts of three classical non-adaptive algorithms (COMP, DD and SCOMP), and analyse their behaviour through both simulations and bounds on error probabilities. By comparing the results of the tropical and classical algorithms, we gain insight into the extra information provided by learning the outcomes (Ct levels) of the tests. We show that in a limiting regime the tropical COMP algorithm requires as many tests as its classical counterpart, but that for sufficiently dense problems tropical DD can recover more information with fewer tests, and can be viewed as essentially optimal in certain regimes.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.