Michael X. Cao;Navneeth Ramakrishnan;Mario Berta;Marco Tomamichel
{"title":"Channel Simulation: Finite Blocklengths and Broadcast Channels","authors":"Michael X. Cao;Navneeth Ramakrishnan;Mario Berta;Marco Tomamichel","doi":"10.1109/TIT.2024.3445998","DOIUrl":null,"url":null,"abstract":"We study channel simulation under common randomness assistance in the finite-blocklength regime and identify the smooth channel max-information as a linear program one-shot converse on the minimal simulation cost for fixed error tolerance. We show that this one-shot converse can be achieved exactly using no-signaling-assisted codes, and approximately achieved using common randomness-assisted codes. Our one-shot converse thus takes on an analogous role to the celebrated meta-converse in the complementary problem of channel coding, and we find tight relations between these two bounds. We asymptotically expand our bounds on the simulation cost for discrete memoryless channels, leading to the second-order as well as the moderate-deviation rate expansion, which can be expressed in terms of the channel capacity and channel dispersion known from noisy channel coding. Our bounds imply the well-known fact that the optimal asymptotic rate of one channel to simulate another under common randomness assistance is given by the ratio of their respective capacities. Additionally, our higher-order asymptotic expansion shows that this reversibility falls apart in the second order. Our techniques extend to discrete memoryless broadcast channels. In stark contrast to the elusive broadcast channel capacity problem, we show that the reverse problem of broadcast channel simulation under common randomness assistance allows for an efficiently computable single-letter characterization of the asymptotic rate region in terms of the broadcast channel’s multipartite mutual information.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 10","pages":"6780-6808"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10639450/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We study channel simulation under common randomness assistance in the finite-blocklength regime and identify the smooth channel max-information as a linear program one-shot converse on the minimal simulation cost for fixed error tolerance. We show that this one-shot converse can be achieved exactly using no-signaling-assisted codes, and approximately achieved using common randomness-assisted codes. Our one-shot converse thus takes on an analogous role to the celebrated meta-converse in the complementary problem of channel coding, and we find tight relations between these two bounds. We asymptotically expand our bounds on the simulation cost for discrete memoryless channels, leading to the second-order as well as the moderate-deviation rate expansion, which can be expressed in terms of the channel capacity and channel dispersion known from noisy channel coding. Our bounds imply the well-known fact that the optimal asymptotic rate of one channel to simulate another under common randomness assistance is given by the ratio of their respective capacities. Additionally, our higher-order asymptotic expansion shows that this reversibility falls apart in the second order. Our techniques extend to discrete memoryless broadcast channels. In stark contrast to the elusive broadcast channel capacity problem, we show that the reverse problem of broadcast channel simulation under common randomness assistance allows for an efficiently computable single-letter characterization of the asymptotic rate region in terms of the broadcast channel’s multipartite mutual information.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.