Bounds and Constructions of Singleton-Optimal Locally Repairable Codes With Small Localities

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Weijun Fang;Ran Tao;Fang-Wei Fu;Bin Chen;Shu-Tao Xia
{"title":"Bounds and Constructions of Singleton-Optimal Locally Repairable Codes With Small Localities","authors":"Weijun Fang;Ran Tao;Fang-Wei Fu;Bin Chen;Shu-Tao Xia","doi":"10.1109/TIT.2024.3448265","DOIUrl":null,"url":null,"abstract":"An \n<inline-formula> <tex-math>$(n, k, d; r)_{q}$ </tex-math></inline-formula>\n-locally repairable code (LRC) is called a Singleton-optimal LRC if it achieves the Singleton-type bound. Analogous to the classical MDS conjecture, the maximal length problem of Singleton-optimal LRCs has attracted a lot of attention in recent years. In this paper, we give an improved upper bound for the length of q-ary Singleton-optimal LRCs with disjoint repair groups such that \n<inline-formula> <tex-math>$(r+1)\\mid n$ </tex-math></inline-formula>\n based on the parity-check matrix approach. In particular, for any Singleton-optimal \n<inline-formula> <tex-math>$(n, k, d; r)_{q}$ </tex-math></inline-formula>\n-LRCs, we show that: 1) \n<inline-formula> <tex-math>$n\\le q+d-4$ </tex-math></inline-formula>\n, when \n<inline-formula> <tex-math>$r=2$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$d=3e+8$ </tex-math></inline-formula>\n with \n<inline-formula> <tex-math>$e\\ge 0$ </tex-math></inline-formula>\n; 2) \n<inline-formula> <tex-math>$n\\leq (r+1)\\left \\lfloor {{\\frac {2(q^{2}+q+1)}{r(r+1)} +e+1}}\\right \\rfloor $ </tex-math></inline-formula>\n, when \n<inline-formula> <tex-math>$d\\ge 8$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$\\max \\left \\{{{3,\\frac {d-e-6}{e+1}}}\\right \\}\\le r\\le \\frac {d-e-3}{e+1}$ </tex-math></inline-formula>\n for any \n<inline-formula> <tex-math>$0\\le e\\le \\left \\lfloor {{\\frac {d-6}{4} }}\\right \\rfloor $ </tex-math></inline-formula>\n. Furthermore, we establish equivalent connections between the existence of Singleton-optimal \n<inline-formula> <tex-math>$(n,k,d;r)_{q}$ </tex-math></inline-formula>\n-LRCs for \n<inline-formula> <tex-math>$d=6, r=3$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$d=7, r=2$ </tex-math></inline-formula>\n with disjoint repair groups and some subsets of lines in finite projective space with certain properties. Consequently, we prove that the length of q-ary Singleton-optimal LRCs with minimum distance \n<inline-formula> <tex-math>$d=6$ </tex-math></inline-formula>\n and locality \n<inline-formula> <tex-math>$r=3$ </tex-math></inline-formula>\n is upper bounded by \n<inline-formula> <tex-math>$O(q^{1.5})$ </tex-math></inline-formula>\n. We construct Singleton-optimal \n<inline-formula> <tex-math>$(8\\le n\\le q+1,k,d=6,r=3)_{q}$ </tex-math></inline-formula>\n-LRC with disjoint repair groups such that \n<inline-formula> <tex-math>$4\\mid n$ </tex-math></inline-formula>\n and determine the exact value of the maximum code length for some specific q. We also prove the existence of \n<inline-formula> <tex-math>$(n, k, d=7; r=2)_{q}$ </tex-math></inline-formula>\n-Singleton-optimal LRCs for \n<inline-formula> <tex-math>$n \\approx \\sqrt {2}q$ </tex-math></inline-formula>\n.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 10","pages":"6842-6856"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10643586/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

An $(n, k, d; r)_{q}$ -locally repairable code (LRC) is called a Singleton-optimal LRC if it achieves the Singleton-type bound. Analogous to the classical MDS conjecture, the maximal length problem of Singleton-optimal LRCs has attracted a lot of attention in recent years. In this paper, we give an improved upper bound for the length of q-ary Singleton-optimal LRCs with disjoint repair groups such that $(r+1)\mid n$ based on the parity-check matrix approach. In particular, for any Singleton-optimal $(n, k, d; r)_{q}$ -LRCs, we show that: 1) $n\le q+d-4$ , when $r=2$ and $d=3e+8$ with $e\ge 0$ ; 2) $n\leq (r+1)\left \lfloor {{\frac {2(q^{2}+q+1)}{r(r+1)} +e+1}}\right \rfloor $ , when $d\ge 8$ and $\max \left \{{{3,\frac {d-e-6}{e+1}}}\right \}\le r\le \frac {d-e-3}{e+1}$ for any $0\le e\le \left \lfloor {{\frac {d-6}{4} }}\right \rfloor $ . Furthermore, we establish equivalent connections between the existence of Singleton-optimal $(n,k,d;r)_{q}$ -LRCs for $d=6, r=3$ and $d=7, r=2$ with disjoint repair groups and some subsets of lines in finite projective space with certain properties. Consequently, we prove that the length of q-ary Singleton-optimal LRCs with minimum distance $d=6$ and locality $r=3$ is upper bounded by $O(q^{1.5})$ . We construct Singleton-optimal $(8\le n\le q+1,k,d=6,r=3)_{q}$ -LRC with disjoint repair groups such that $4\mid n$ and determine the exact value of the maximum code length for some specific q. We also prove the existence of $(n, k, d=7; r=2)_{q}$ -Singleton-optimal LRCs for $n \approx \sqrt {2}q$ .
具有小局部的单子最优局部可修复代码的边界与构造
如果一个$(n, k, d; r)_{q}$ -本地可修复代码(LRC)达到了 Singleton-optimal LRC 的 Singleton-type 约束,那么它就被称为 Singleton-optimal LRC。与经典的 MDS 猜想类似,近年来 Singleton-optimal LRC 的最大长度问题也引起了广泛关注。在本文中,我们基于奇偶校验矩阵方法,给出了具有互不相交的修复组的 qary Singleton-optimal LRC 的改进长度上界,即 $(r+1)\mid n$。特别是,对于任何单子最优 $(n, k, d; r)_{q}$ -LRCs, 我们证明了1) $n\le q+d-4$ ,当 $r=2$ 和 $d=3e+8$ 且 $e\ge 0$ 时;2) $n\leq (r+1)\left \lfloor {{\frac {2(q^{2}+q+1)}{r(r+1)} +e+1}}\right \rfloor $ , 当 $d\ge 8$ 并且 $\max \left \{{3、\rfle {d-e-3}{e+1}$ for any $0\le e\le \left \lfloor {{\frac {d-6}{4}}}right \rfloor $ 。此外,我们还建立了在 $d=6,r=3$ 和 $d=7,r=2$ 条件下存在具有互不相交的修复组的 Singleton-optimal $(n,k,d;r)_{q}$ -LRC 与有限投影空间中具有某些性质的线段子集之间的等价联系。因此,我们证明了具有最小距离 $d=6$ 和局部性 $r=3$ 的 qary Singleton-optimal LRC 的长度上界为 $O(q^{1.5})$ 。我们构建了具有不相交修复组的$(8\le n\le q+1,k,d=6,r=3)_{q}$ -LRC,使得$4\mid n$,并确定了某些特定q的最大代码长度的精确值。我们还证明了对于$n \approx \sqrt {2}q$,存在$(n,k,d=7;r=2)_{q}$ -Singleton-optimal LRC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信