{"title":"Repairing Reed-Solomon Codes Over Prime Fields via Exponential Sums","authors":"Roni Con;Noah Shutty;Itzhak Tamo;Mary Wootters","doi":"10.1109/TIT.2024.3449041","DOIUrl":null,"url":null,"abstract":"This paper presents two repair schemes for low-rate Reed-Solomon (RS) codes over prime fields that can repair any node by downloading a constant number of bits from each surviving node. The total bandwidth resulting from these schemes is greater than that incurred during trivial repair; however, this is particularly relevant in the context of leakage-resilient secret sharing. In that framework, our results provide attacks showing that k-out-of-n Shamir’s Secret Sharing over prime fields for small k is not leakage-resilient, even when the parties leak only a constant number of bits. To the best of our knowledge, these are the first such attacks. Our results are derived from a novel connection between exponential sums and the repair of RS codes. Specifically, we establish that non-trivial bounds on certain exponential sums imply the existence of explicit nonlinear repair schemes for RS codes over prime fields.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 12","pages":"8587-8594"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10644039/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents two repair schemes for low-rate Reed-Solomon (RS) codes over prime fields that can repair any node by downloading a constant number of bits from each surviving node. The total bandwidth resulting from these schemes is greater than that incurred during trivial repair; however, this is particularly relevant in the context of leakage-resilient secret sharing. In that framework, our results provide attacks showing that k-out-of-n Shamir’s Secret Sharing over prime fields for small k is not leakage-resilient, even when the parties leak only a constant number of bits. To the best of our knowledge, these are the first such attacks. Our results are derived from a novel connection between exponential sums and the repair of RS codes. Specifically, we establish that non-trivial bounds on certain exponential sums imply the existence of explicit nonlinear repair schemes for RS codes over prime fields.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.