Repairing Reed-Solomon Codes Over Prime Fields via Exponential Sums

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Roni Con;Noah Shutty;Itzhak Tamo;Mary Wootters
{"title":"Repairing Reed-Solomon Codes Over Prime Fields via Exponential Sums","authors":"Roni Con;Noah Shutty;Itzhak Tamo;Mary Wootters","doi":"10.1109/TIT.2024.3449041","DOIUrl":null,"url":null,"abstract":"This paper presents two repair schemes for low-rate Reed-Solomon (RS) codes over prime fields that can repair any node by downloading a constant number of bits from each surviving node. The total bandwidth resulting from these schemes is greater than that incurred during trivial repair; however, this is particularly relevant in the context of leakage-resilient secret sharing. In that framework, our results provide attacks showing that k-out-of-n Shamir’s Secret Sharing over prime fields for small k is not leakage-resilient, even when the parties leak only a constant number of bits. To the best of our knowledge, these are the first such attacks. Our results are derived from a novel connection between exponential sums and the repair of RS codes. Specifically, we establish that non-trivial bounds on certain exponential sums imply the existence of explicit nonlinear repair schemes for RS codes over prime fields.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 12","pages":"8587-8594"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10644039/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents two repair schemes for low-rate Reed-Solomon (RS) codes over prime fields that can repair any node by downloading a constant number of bits from each surviving node. The total bandwidth resulting from these schemes is greater than that incurred during trivial repair; however, this is particularly relevant in the context of leakage-resilient secret sharing. In that framework, our results provide attacks showing that k-out-of-n Shamir’s Secret Sharing over prime fields for small k is not leakage-resilient, even when the parties leak only a constant number of bits. To the best of our knowledge, these are the first such attacks. Our results are derived from a novel connection between exponential sums and the repair of RS codes. Specifically, we establish that non-trivial bounds on certain exponential sums imply the existence of explicit nonlinear repair schemes for RS codes over prime fields.
通过指数和修复素域上的里德-所罗门码
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信