Improved Field Size Bounds for Higher Order MDS Codes

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Joshua Brakensiek;Manik Dhar;Sivakanth Gopi
{"title":"Improved Field Size Bounds for Higher Order MDS Codes","authors":"Joshua Brakensiek;Manik Dhar;Sivakanth Gopi","doi":"10.1109/TIT.2024.3449030","DOIUrl":null,"url":null,"abstract":"Higher order MDS codes are an interesting generalization of MDS codes recently introduced by Brakensiek et al., (2023). In later works, they were shown to be intimately connected to optimally list-decodable codes and maximally recoverable tensor codes. Therefore (explicit) constructions of higher order MDS codes over small fields is an important open problem. Higher order MDS codes are denoted by \n<inline-formula> <tex-math>$\\rm {MDS}(\\ell)$ </tex-math></inline-formula>\n where \n<inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>\n denotes the order of generality, \n<inline-formula> <tex-math>$\\rm {MDS}(2)$ </tex-math></inline-formula>\n codes are equivalent to the usual MDS codes. The best prior lower bound on the field size of an \n<inline-formula> <tex-math>${[}n,k{]}$ </tex-math></inline-formula>\n-\n<inline-formula> <tex-math>$\\rm {MDS}(\\ell)$ </tex-math></inline-formula>\n codes is \n<inline-formula> <tex-math>$\\Omega _{\\ell } (n^{\\ell -1})$ </tex-math></inline-formula>\n, whereas the best known (non-explicit) upper bound is \n<inline-formula> <tex-math>$O_{\\ell } (n^{k(\\ell -1)})$ </tex-math></inline-formula>\n which is exponential in the dimension. In this work, we nearly close this exponential gap between upper and lower bounds. We show that an \n<inline-formula> <tex-math>${[}n,k{]}$ </tex-math></inline-formula>\n-\n<inline-formula> <tex-math>$\\rm {MDS}(3)$ </tex-math></inline-formula>\n codes requires a field of size \n<inline-formula> <tex-math>$\\Omega _{k}(n^{k-1})$ </tex-math></inline-formula>\n, which is close to the known upper bound. Using the connection between higher order MDS codes and optimally list-decodable codes, we show that even for a list size of 2, a code which meets the optimal list-decoding Singleton bound requires exponential field size; this resolves an open question by Shangguan and Tamo, (2020). We also give explicit constructions of \n<inline-formula> <tex-math>${[}n,k{]}$ </tex-math></inline-formula>\n-\n<inline-formula> <tex-math>$\\rm {MDS}(\\ell)$ </tex-math></inline-formula>\n code over fields of size \n<inline-formula> <tex-math>$n^{(\\ell k)^{O(\\ell k)}}$ </tex-math></inline-formula>\n. The smallest non-trivial case where we still do not have optimal constructions is \n<inline-formula> <tex-math>${[}n,3{]}$ </tex-math></inline-formula>\n-\n<inline-formula> <tex-math>$\\rm {MDS}(3)$ </tex-math></inline-formula>\n. In this case, the known lower bound on the field size is \n<inline-formula> <tex-math>$\\Omega (n^{2})$ </tex-math></inline-formula>\n and the best known upper bounds are \n<inline-formula> <tex-math>$O(n^{5})$ </tex-math></inline-formula>\n for a non-explicit construction and \n<inline-formula> <tex-math>$O(n^{32})$ </tex-math></inline-formula>\n for an explicit construction. In this paper, we give an explicit construction over fields of size \n<inline-formula> <tex-math>$O(n^{3})$ </tex-math></inline-formula>\n which comes very close to being optimal.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 10","pages":"6950-6960"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10644007/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Higher order MDS codes are an interesting generalization of MDS codes recently introduced by Brakensiek et al., (2023). In later works, they were shown to be intimately connected to optimally list-decodable codes and maximally recoverable tensor codes. Therefore (explicit) constructions of higher order MDS codes over small fields is an important open problem. Higher order MDS codes are denoted by $\rm {MDS}(\ell)$ where $\ell $ denotes the order of generality, $\rm {MDS}(2)$ codes are equivalent to the usual MDS codes. The best prior lower bound on the field size of an ${[}n,k{]}$ - $\rm {MDS}(\ell)$ codes is $\Omega _{\ell } (n^{\ell -1})$ , whereas the best known (non-explicit) upper bound is $O_{\ell } (n^{k(\ell -1)})$ which is exponential in the dimension. In this work, we nearly close this exponential gap between upper and lower bounds. We show that an ${[}n,k{]}$ - $\rm {MDS}(3)$ codes requires a field of size $\Omega _{k}(n^{k-1})$ , which is close to the known upper bound. Using the connection between higher order MDS codes and optimally list-decodable codes, we show that even for a list size of 2, a code which meets the optimal list-decoding Singleton bound requires exponential field size; this resolves an open question by Shangguan and Tamo, (2020). We also give explicit constructions of ${[}n,k{]}$ - $\rm {MDS}(\ell)$ code over fields of size $n^{(\ell k)^{O(\ell k)}}$ . The smallest non-trivial case where we still do not have optimal constructions is ${[}n,3{]}$ - $\rm {MDS}(3)$ . In this case, the known lower bound on the field size is $\Omega (n^{2})$ and the best known upper bounds are $O(n^{5})$ for a non-explicit construction and $O(n^{32})$ for an explicit construction. In this paper, we give an explicit construction over fields of size $O(n^{3})$ which comes very close to being optimal.
改进高阶 MDS 代码的字段大小界限
高阶 MDS 码是 Brakensiek 等人(2023 年)最近提出的 MDS 码的有趣概括。在后来的研究中,它们被证明与最优列表可解码码和最大可恢复张量码密切相关。因此,(显式)构造小域上的高阶 MDS 码是一个重要的开放性问题。高阶 MDS 码用 $\rm {MDS}(\ell)$ 表示,其中 $\ell $ 表示一般阶,$\rm {MDS}(2)$ 码等价于通常的 MDS 码。关于${[}n,k{]}$ - $\rm {MDS}(\ell)$ 代码的字段大小的最佳先验下限是$\Omega _{\ell } (n^{ell -1})$ ,而已知的最佳(非显式)上限是$O_{\ell } (n^{k(\ell -1)})$ ,它的维数是指数级的。在这项工作中,我们几乎缩小了上界和下界之间的指数差距。我们证明,${[}n,k{]}$ - $\rm {MDS}(3)$ 代码需要一个大小为 $\Omega _{k}(n^{k-1})$ 的域,这接近已知的上限。利用高阶 MDS 代码和最优列表可解码代码之间的联系,我们证明了即使列表大小为 2,满足最优列表解码 Singleton 约束的代码也需要指数级的字段大小;这解决了上官和 Tamo (2020) 提出的一个未决问题。我们还给出了在大小为 $n^{(\ell k)^{O(\ell k)}}$ 的字段上的 ${[}n,k{]}$ - $\rm {MDS}(\ell)$ 代码的明确构造。在这种情况下,已知的字段大小下限是 $\Omega (n^{2})$,已知的最佳上限是非显式构造的 $O(n^{5})$和显式构造的 $O(n^{32})$。在本文中,我们给出了在大小为 $O(n^{3})$ 的域上的显式构造,它非常接近最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信