Rodrigo Souza, Natalia Gérez, Natalia Besil, María Verónica Cesio, Horacio Heinzen and Lucia Pareja
{"title":"Development of a novel and useful methodology for the simultaneous analysis of multiclass contaminants in bovine fat†","authors":"Rodrigo Souza, Natalia Gérez, Natalia Besil, María Verónica Cesio, Horacio Heinzen and Lucia Pareja","doi":"10.1039/D4AY00516C","DOIUrl":null,"url":null,"abstract":"<p >The instrumental development of tandem mass spectrometers fosters the actual trend in the trace analysis of organic compounds to the development of methods that allow the analysis of contaminants of the most diverse origin in a single analytical sample. The multiclass methods are aligned with the Who's One Health initiative while accomplishing the concepts of green chemistry. However, there are few reports of wide scope multiclass methods for the analysis of contaminants in this matrix. In this work, a method for the simultaneous determination of 62 compounds in bovine fat, was developed and validated following DG-SANTE/11813/2021 guidance. Liquid nitrogen milled fat was extracted with toluene and acetonitrile. Then a clean-up in a cryogenic bath, followed by dispersive solid phase extraction was performed. Residue determination was done using liquid chromatography for 44 compounds and gas chromatography for 18 compounds, both coupled to tandem mass spectrometry in MRM mode. The method was first developed and validated for two ectoparasiticides, then the scope was expanded for the analysis of 13 veterinary drugs and 49 pesticides. Recovery percentages were in the range of 60–134%, high matrix effect was observed in 50% of the scope of the method. Most compounds presented limits of quantification of 10 μg kg<small><sup>−1</sup></small> in compliance with international requirements. The method was applied to monitor 49 commercial samples to evaluate its performance. Eighty percent of samples contained ethion and 10% had fluazuron, both within MRLs, highlighting the need for proper withdrawal times.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" 42","pages":" 7255-7263"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ay/d4ay00516c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The instrumental development of tandem mass spectrometers fosters the actual trend in the trace analysis of organic compounds to the development of methods that allow the analysis of contaminants of the most diverse origin in a single analytical sample. The multiclass methods are aligned with the Who's One Health initiative while accomplishing the concepts of green chemistry. However, there are few reports of wide scope multiclass methods for the analysis of contaminants in this matrix. In this work, a method for the simultaneous determination of 62 compounds in bovine fat, was developed and validated following DG-SANTE/11813/2021 guidance. Liquid nitrogen milled fat was extracted with toluene and acetonitrile. Then a clean-up in a cryogenic bath, followed by dispersive solid phase extraction was performed. Residue determination was done using liquid chromatography for 44 compounds and gas chromatography for 18 compounds, both coupled to tandem mass spectrometry in MRM mode. The method was first developed and validated for two ectoparasiticides, then the scope was expanded for the analysis of 13 veterinary drugs and 49 pesticides. Recovery percentages were in the range of 60–134%, high matrix effect was observed in 50% of the scope of the method. Most compounds presented limits of quantification of 10 μg kg−1 in compliance with international requirements. The method was applied to monitor 49 commercial samples to evaluate its performance. Eighty percent of samples contained ethion and 10% had fluazuron, both within MRLs, highlighting the need for proper withdrawal times.