{"title":"Artificial neural network model for extracting knowledge from the electro-Fenton process for acid mine wastewater treatment","authors":"Anoop Kumar Maurya, Pasupuleti Lakshmi Narayana, Uma Maheshwera Reddy Paturi, Subba Reddy Nagireddy Gari","doi":"10.1002/clen.202400029","DOIUrl":null,"url":null,"abstract":"<p>In this study, artificial neural networks (ANNs) were employed to analyze the complex interactions between electro-Fenton (EF) process variables (plate spacing, current intensity [CI], initial pH, aeration rate) and the Fe(II) and Mn(II) removal efficiency from wastewater. After experimenting with 69 different ANN architectures, the 4-8-8-2 architecture was identified as more efficient, achieving higher accuracy (adj. <i>R</i><sup>2</sup> of 0.93 for Fe(II) and 0.96 for Mn(II)) than the published model. The research provides valuable insights into the correlation between EF process parameters and removal efficiency, guiding the optimization of wastewater treatment processes. Sensitivity analysis revealed that CI significantly affects Mn(II) and Fe(II) removal efficiency. A user-friendly graphical interface was created based on the synaptic weights of the best model to enable practical predictions. It is designed to be accessible even to users without programing experience.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202400029","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, artificial neural networks (ANNs) were employed to analyze the complex interactions between electro-Fenton (EF) process variables (plate spacing, current intensity [CI], initial pH, aeration rate) and the Fe(II) and Mn(II) removal efficiency from wastewater. After experimenting with 69 different ANN architectures, the 4-8-8-2 architecture was identified as more efficient, achieving higher accuracy (adj. R2 of 0.93 for Fe(II) and 0.96 for Mn(II)) than the published model. The research provides valuable insights into the correlation between EF process parameters and removal efficiency, guiding the optimization of wastewater treatment processes. Sensitivity analysis revealed that CI significantly affects Mn(II) and Fe(II) removal efficiency. A user-friendly graphical interface was created based on the synaptic weights of the best model to enable practical predictions. It is designed to be accessible even to users without programing experience.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.