{"title":"Effect of mixed metal oxide‐based catalysts for the removal of hydrophobic phthalates from water","authors":"Salman Farissi, Peringai Aswin, Anbazhagi Muthukumar, Ayyamperumal Sakthivel, Muthukumar Muthuchamy","doi":"10.1002/clen.202300253","DOIUrl":null,"url":null,"abstract":"Contaminants of emerging concern (CECs) such as phthalic acid esters (PAEs) are ubiquitous, toxic and persistent in aquatic environments. Current study explored mixed metal oxide catalysts derived from magnesium aluminium (MAH), magnesium aluminium ruthenium (MAR‐H), magnesium aluminium nickel (MANH) hydroxides and copper aluminium hydroxides of ammonium (CAM‐Am) and sodium molybdate (CAM‐Na) to remove dibutyl phthalate (DBP) and di‐2‐ethyl hexyl phthalate (DEHP) from water. Powder X‐ray diffraction (XRD) studies of the catalysts before and after the treatment showed that their structures were stable and robust. During Fourier Transform Infrared (FTIR) studies, vibrational bands or peaks of ester and alkane functional groups of DBP and DEHP were observed at all the catalysts after treatment. Thermogravimetric analysis (TGA) confirmed phthalate adsorption at the five catalysts. Hydrolysis of DBP and DEHP was observed during treatment using CAM‐Am and CAM‐Na that was analysed and quantified using total organic carbon (TOC), high performance liquid chromatography (HPLC) and high‐resolution mass spectrometry (HRMS). From TOC analyses, optimal conditions of 500 mg L<jats:sup>−1</jats:sup> catalyst dosage and 30 h treatment time were deduced for catalytic hydrolysis of DBP and DEHP. Present study illustrated that the catalysts MAH and MANH can adsorb PAEs while CAM‐Na can adsorb and hydrolyse them.","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"80 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/clen.202300253","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Contaminants of emerging concern (CECs) such as phthalic acid esters (PAEs) are ubiquitous, toxic and persistent in aquatic environments. Current study explored mixed metal oxide catalysts derived from magnesium aluminium (MAH), magnesium aluminium ruthenium (MAR‐H), magnesium aluminium nickel (MANH) hydroxides and copper aluminium hydroxides of ammonium (CAM‐Am) and sodium molybdate (CAM‐Na) to remove dibutyl phthalate (DBP) and di‐2‐ethyl hexyl phthalate (DEHP) from water. Powder X‐ray diffraction (XRD) studies of the catalysts before and after the treatment showed that their structures were stable and robust. During Fourier Transform Infrared (FTIR) studies, vibrational bands or peaks of ester and alkane functional groups of DBP and DEHP were observed at all the catalysts after treatment. Thermogravimetric analysis (TGA) confirmed phthalate adsorption at the five catalysts. Hydrolysis of DBP and DEHP was observed during treatment using CAM‐Am and CAM‐Na that was analysed and quantified using total organic carbon (TOC), high performance liquid chromatography (HPLC) and high‐resolution mass spectrometry (HRMS). From TOC analyses, optimal conditions of 500 mg L−1 catalyst dosage and 30 h treatment time were deduced for catalytic hydrolysis of DBP and DEHP. Present study illustrated that the catalysts MAH and MANH can adsorb PAEs while CAM‐Na can adsorb and hydrolyse them.
期刊介绍:
CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications.
Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.