{"title":"Lattice Polarity Manipulation of AlN Films on SiC Substrates for N-Polar GaN HEMTs","authors":"Yunfei Niu, Gaoqiang Deng, Tao Wang, Haotian Ma, Shixu Yang, Jiaqi Yu, Lidong Zhang, Yusen Wang, Changcai Zuo, Bin Duan, Baolin Zhang, Guoxing Li, Xiaojuan Sun, Dabing Li, Yuantao Zhang","doi":"10.1021/acs.cgd.4c00585","DOIUrl":null,"url":null,"abstract":"Realization of nitrogen-polar (N-polar) AlN on SiC is important for the development of high-performance GaN high-electron mobility transistors (HEMTs). However, AlN films grown on SiC substrates are mostly metal-polar, and it is difficult to achieve an N-polar AlN on them. In this work, we manipulated the lattice polarity of AlN grown on SiC by varying the V/III ratio. Our results show that AlN films grown at a low V/III ratio undergo lattice polarity reversal from N-polarity to metal-polarity near the AlN/SiC interface. This occurs because oxygen enrichment occurs in AlN, forming a thin AlON layer close to the interface. Importantly, we suppress the oxygen enrichment and thus the formation of AlON in AlN under a high V/III ratio, i.e., an N-rich growth condition, and finally achieve an N-polar AlN film on SiC. We also find that the threshold V/III ratio that realizes N-polar AlN on SiC without lattice polarity reversal is ∼6000. Furthermore, we prepared a GaN/AlGaN HEMT structure based on the obtained N-polar AlN, and the 2-dimensional electron gas density and mobility at the heterostructure interface are 1.5 × 10<sup>13</sup> cm<sup>–2</sup> and 923 cm<sup>2</sup>/V·s, respectively. This work is expected to promote the development of N-polar GaN HEMTs on SiC.","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.cgd.4c00585","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Realization of nitrogen-polar (N-polar) AlN on SiC is important for the development of high-performance GaN high-electron mobility transistors (HEMTs). However, AlN films grown on SiC substrates are mostly metal-polar, and it is difficult to achieve an N-polar AlN on them. In this work, we manipulated the lattice polarity of AlN grown on SiC by varying the V/III ratio. Our results show that AlN films grown at a low V/III ratio undergo lattice polarity reversal from N-polarity to metal-polarity near the AlN/SiC interface. This occurs because oxygen enrichment occurs in AlN, forming a thin AlON layer close to the interface. Importantly, we suppress the oxygen enrichment and thus the formation of AlON in AlN under a high V/III ratio, i.e., an N-rich growth condition, and finally achieve an N-polar AlN film on SiC. We also find that the threshold V/III ratio that realizes N-polar AlN on SiC without lattice polarity reversal is ∼6000. Furthermore, we prepared a GaN/AlGaN HEMT structure based on the obtained N-polar AlN, and the 2-dimensional electron gas density and mobility at the heterostructure interface are 1.5 × 1013 cm–2 and 923 cm2/V·s, respectively. This work is expected to promote the development of N-polar GaN HEMTs on SiC.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.