A two-field-scan harmonic Hall voltage analysis for fast, accurate quantification of spin-orbit torques in magnetic heterostructures

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Xin Lin, Lijun Zhu
{"title":"A two-field-scan harmonic Hall voltage analysis for fast, accurate quantification of spin-orbit torques in magnetic heterostructures","authors":"Xin Lin,&nbsp;Lijun Zhu","doi":"10.1007/s11433-024-2439-4","DOIUrl":null,"url":null,"abstract":"<div><p>We report on the development of a “two-field-scan” harmonic Hall voltage (HHV) analysis, which collects the second HHV as a function of a swept in-plane magnetic field at 45° and 0° relative to the excitation current, for the determination of the spin-orbit torques of transverse spins in magnetic heterostructures without significant perpendicular spins, longitudinal spins, and longitudinal/perpendicular Oersted fields. We demonstrate that this two-field-scan analysis is as accurate as the well-established but time-consuming angle-scan HHV analysis even in the presence of considerable thermoelectric effects but takes more than a factor of 7 less measurement time. We also show that the fit of the HHV data from a single field scan at 0°, which is commonly employed in the literature, is not reliable because the employment of too many free parameters in the fitting of the very slowly varying HHV signal allows erroneous conclusion about the spin-orbit torque efficiencies.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"67 10","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2439-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report on the development of a “two-field-scan” harmonic Hall voltage (HHV) analysis, which collects the second HHV as a function of a swept in-plane magnetic field at 45° and 0° relative to the excitation current, for the determination of the spin-orbit torques of transverse spins in magnetic heterostructures without significant perpendicular spins, longitudinal spins, and longitudinal/perpendicular Oersted fields. We demonstrate that this two-field-scan analysis is as accurate as the well-established but time-consuming angle-scan HHV analysis even in the presence of considerable thermoelectric effects but takes more than a factor of 7 less measurement time. We also show that the fit of the HHV data from a single field scan at 0°, which is commonly employed in the literature, is not reliable because the employment of too many free parameters in the fitting of the very slowly varying HHV signal allows erroneous conclusion about the spin-orbit torque efficiencies.

用于快速、准确量化磁性异质结构中自旋轨道力矩的双场扫描谐波霍尔电压分析法
我们报告了 "两次磁场扫描 "谐波霍尔电压 (HHV) 分析的发展情况,该分析收集了相对于激发电流 45° 和 0° 的扫面磁场的第二次 HHV 函数,用于确定磁性异质结构中横向自旋的自旋轨道转矩,而这些结构中没有明显的垂直自旋、纵向自旋和纵向/垂直奥斯特磁场。我们证明,即使在存在大量热电效应的情况下,这种双磁场扫描分析与成熟但耗时的角度扫描 HHV 分析一样精确,但所需的测量时间要少 7 倍以上。我们还表明,文献中通常采用的 0° 单场扫描 HHV 数据拟合方法并不可靠,因为在拟合变化非常缓慢的 HHV 信号时使用了过多的自由参数,从而导致对自旋轨道转矩效率得出错误的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信