{"title":"Artificial intelligence in interventional radiology: Current concepts and future trends.","authors":"Armelle Lesaunier,Julien Khlaut,Corentin Dancette,Lambros Tselikas,Baptiste Bonnet,Tom Boeken","doi":"10.1016/j.diii.2024.08.004","DOIUrl":null,"url":null,"abstract":"While artificial intelligence (AI) is already well established in diagnostic radiology, it is beginning to make its mark in interventional radiology. AI has the potential to dramatically change the daily practice of interventional radiology at several levels. In the preoperative setting, recent advances in deep learning models, particularly foundation models, enable effective management of multimodality and increased autonomy through their ability to function minimally without supervision. Multimodality is at the heart of patient-tailored management and in interventional radiology, this translates into the development of innovative models for patient selection and outcome prediction. In the perioperative setting, AI is manifesting itself in applications that assist radiologists in image analysis and real-time decision making, thereby improving the efficiency, accuracy, and safety of interventions. In synergy with advances in robotic technologies, AI is laying the groundwork for an increased autonomy. From a research perspective, the development of artificial health data, such as AI-based data augmentation, offers an innovative solution to this central issue and promises to stimulate research in this area. This review aims to provide the medical community with the most important current and future applications of AI in interventional radiology.","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and Interventional Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.diii.2024.08.004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
While artificial intelligence (AI) is already well established in diagnostic radiology, it is beginning to make its mark in interventional radiology. AI has the potential to dramatically change the daily practice of interventional radiology at several levels. In the preoperative setting, recent advances in deep learning models, particularly foundation models, enable effective management of multimodality and increased autonomy through their ability to function minimally without supervision. Multimodality is at the heart of patient-tailored management and in interventional radiology, this translates into the development of innovative models for patient selection and outcome prediction. In the perioperative setting, AI is manifesting itself in applications that assist radiologists in image analysis and real-time decision making, thereby improving the efficiency, accuracy, and safety of interventions. In synergy with advances in robotic technologies, AI is laying the groundwork for an increased autonomy. From a research perspective, the development of artificial health data, such as AI-based data augmentation, offers an innovative solution to this central issue and promises to stimulate research in this area. This review aims to provide the medical community with the most important current and future applications of AI in interventional radiology.
期刊介绍:
Diagnostic and Interventional Imaging accepts publications originating from any part of the world based only on their scientific merit. The Journal focuses on illustrated articles with great iconographic topics and aims at aiding sharpening clinical decision-making skills as well as following high research topics. All articles are published in English.
Diagnostic and Interventional Imaging publishes editorials, technical notes, letters, original and review articles on abdominal, breast, cancer, cardiac, emergency, forensic medicine, head and neck, musculoskeletal, gastrointestinal, genitourinary, interventional, obstetric, pediatric, thoracic and vascular imaging, neuroradiology, nuclear medicine, as well as contrast material, computer developments, health policies and practice, and medical physics relevant to imaging.