Mushfeqa Iqfath, Syeda Nazifa Wali, Sara Amer, Emerson Hernly, Julia Laskin
{"title":"Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging (nano-DESI MSI): A Tutorial Review","authors":"Mushfeqa Iqfath, Syeda Nazifa Wali, Sara Amer, Emerson Hernly, Julia Laskin","doi":"10.1021/acsmeasuresciau.4c00028","DOIUrl":null,"url":null,"abstract":"Nanospray desorption electrospray ionization (nano-DESI) is a liquid-based ambient mass spectrometry imaging (MSI) technique that enables visualization of analyte distributions in biological samples down to cellular-level spatial resolution. Since its inception, significant advancements have been made to the nano-DESI experimental platform to facilitate molecular imaging with high throughput, deep molecular coverage, and spatial resolution better than 10 μm. The molecular selectivity of nano-DESI MSI has been enhanced using new data acquisition strategies, the development of separation and online derivatization approaches for isobar separation and isomer-selective imaging, and the optimization of the working solvent composition to improve analyte extraction and ionization efficiency. Furthermore, nano-DESI MSI research has underscored the importance of matrix effects and established normalization methods for accurately measuring concentration gradients in complex biological samples. This tutorial offers a comprehensive guide to nano-DESI experiments, detailing fundamental principles and data acquisition and processing methods and discussing essential operational parameters.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmeasuresciau.4c00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanospray desorption electrospray ionization (nano-DESI) is a liquid-based ambient mass spectrometry imaging (MSI) technique that enables visualization of analyte distributions in biological samples down to cellular-level spatial resolution. Since its inception, significant advancements have been made to the nano-DESI experimental platform to facilitate molecular imaging with high throughput, deep molecular coverage, and spatial resolution better than 10 μm. The molecular selectivity of nano-DESI MSI has been enhanced using new data acquisition strategies, the development of separation and online derivatization approaches for isobar separation and isomer-selective imaging, and the optimization of the working solvent composition to improve analyte extraction and ionization efficiency. Furthermore, nano-DESI MSI research has underscored the importance of matrix effects and established normalization methods for accurately measuring concentration gradients in complex biological samples. This tutorial offers a comprehensive guide to nano-DESI experiments, detailing fundamental principles and data acquisition and processing methods and discussing essential operational parameters.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.