MetMiner: A user‐friendly pipeline for large‐scale plant metabolomics data analysis

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiao Wang, Shuang Liang, Wenqi Yang, Ke Yu, Fei Liang, Bing Zhao, Xiang Zhu, Chao Zhou, Luis A. J. Mur, Jeremy A. Roberts, Junli Zhang, Xuebin Zhang
{"title":"MetMiner: A user‐friendly pipeline for large‐scale plant metabolomics data analysis","authors":"Xiao Wang, Shuang Liang, Wenqi Yang, Ke Yu, Fei Liang, Bing Zhao, Xiang Zhu, Chao Zhou, Luis A. J. Mur, Jeremy A. Roberts, Junli Zhang, Xuebin Zhang","doi":"10.1111/jipb.13774","DOIUrl":null,"url":null,"abstract":"The utilization of metabolomics approaches to explore the metabolic mechanisms underlying plant fitness and adaptation to dynamic environments is growing, highlighting the need for an efficient and user‐friendly toolkit tailored for analyzing the extensive datasets generated by metabolomics studies. Current protocols for metabolome data analysis often struggle with handling large‐scale datasets or require programming skills. To address this, we present MetMiner (<jats:ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"https://github.com/ShawnWx2019/MetMiner\">https://github.com/ShawnWx2019/MetMiner</jats:ext-link>), a user‐friendly, full‐functionality pipeline specifically designed for plant metabolomics data analysis. Built on R shiny, MetMiner can be deployed on servers to utilize additional computational resources for processing large‐scale datasets. MetMiner ensures transparency, traceability, and reproducibility throughout the analytical process. Its intuitive interface provides robust data interaction and graphical capabilities, enabling users without prior programming skills to engage deeply in data analysis. Additionally, we constructed and integrated a plant‐specific mass spectrometry database into the MetMiner pipeline to optimize metabolite annotation. We have also developed MDAtoolkits, which include a complete set of tools for statistical analysis, metabolite classification, and enrichment analysis, to facilitate the mining of biological meaning from the datasets. Moreover, we propose an iterative weighted gene co‐expression network analysis strategy for efficient biomarker metabolite screening in large‐scale metabolomics data mining. In two case studies, we validated MetMiner's efficiency in data mining and robustness in metabolite annotation. Together, the MetMiner pipeline represents a promising solution for plant metabolomics analysis, providing a valuable tool for the scientific community to use with ease.","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13774","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of metabolomics approaches to explore the metabolic mechanisms underlying plant fitness and adaptation to dynamic environments is growing, highlighting the need for an efficient and user‐friendly toolkit tailored for analyzing the extensive datasets generated by metabolomics studies. Current protocols for metabolome data analysis often struggle with handling large‐scale datasets or require programming skills. To address this, we present MetMiner (https://github.com/ShawnWx2019/MetMiner), a user‐friendly, full‐functionality pipeline specifically designed for plant metabolomics data analysis. Built on R shiny, MetMiner can be deployed on servers to utilize additional computational resources for processing large‐scale datasets. MetMiner ensures transparency, traceability, and reproducibility throughout the analytical process. Its intuitive interface provides robust data interaction and graphical capabilities, enabling users without prior programming skills to engage deeply in data analysis. Additionally, we constructed and integrated a plant‐specific mass spectrometry database into the MetMiner pipeline to optimize metabolite annotation. We have also developed MDAtoolkits, which include a complete set of tools for statistical analysis, metabolite classification, and enrichment analysis, to facilitate the mining of biological meaning from the datasets. Moreover, we propose an iterative weighted gene co‐expression network analysis strategy for efficient biomarker metabolite screening in large‐scale metabolomics data mining. In two case studies, we validated MetMiner's efficiency in data mining and robustness in metabolite annotation. Together, the MetMiner pipeline represents a promising solution for plant metabolomics analysis, providing a valuable tool for the scientific community to use with ease.
MetMiner:用于大规模植物代谢组学数据分析的用户友好型管道
利用代谢组学方法探索植物适应性和适应动态环境的代谢机制的应用越来越广泛,这突出表明需要一种高效且用户友好的工具包,专门用于分析代谢组学研究产生的大量数据集。目前的代谢组数据分析方案往往难以处理大规模数据集,或者需要编程技能。为了解决这个问题,我们推出了 MetMiner (https://github.com/ShawnWx2019/MetMiner),这是一个专为植物代谢组学数据分析设计的用户友好型全功能管道。MetMiner基于R语言开发,可以部署在服务器上,利用额外的计算资源处理大规模数据集。MetMiner 可确保整个分析过程的透明度、可追溯性和可重复性。其直观的界面提供了强大的数据交互和图形功能,使没有编程技能的用户也能深入参与数据分析。此外,我们还构建了植物专用质谱数据库,并将其集成到 MetMiner 管道中,以优化代谢物注释。我们还开发了 MDAtoolkits,其中包括一整套用于统计分析、代谢物分类和富集分析的工具,以方便从数据集中挖掘生物学意义。此外,我们还提出了一种迭代加权基因共表达网络分析策略,用于在大规模代谢组学数据挖掘中高效筛选生物标记代谢物。在两个案例研究中,我们验证了 MetMiner 在数据挖掘方面的效率和代谢物注释方面的稳健性。总之,MetMiner 管道代表了植物代谢组学分析的一种有前途的解决方案,为科学界提供了一种易于使用的宝贵工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信