Eco-friendly Cadmium Removal Using Novel Modified Clay/Alginate Floatable Beads: A Sustainable Solution for Water Pollution Mitigation

IF 2.9 4区 综合性期刊 Q1 Multidisciplinary
Hajar Abara, Hajar Saadani, Brahim Allaoui, Soukaina Akachar, Mohamed Hadri, Mohammadi Ahrouch, Abdeslam Barhoun, Khalid Draoui
{"title":"Eco-friendly Cadmium Removal Using Novel Modified Clay/Alginate Floatable Beads: A Sustainable Solution for Water Pollution Mitigation","authors":"Hajar Abara, Hajar Saadani, Brahim Allaoui, Soukaina Akachar, Mohamed Hadri, Mohammadi Ahrouch, Abdeslam Barhoun, Khalid Draoui","doi":"10.1007/s13369-024-09513-5","DOIUrl":null,"url":null,"abstract":"<p>Water contamination by heavy metals has become a very alarming issue in all industrialized countries. The present study explores the development of a sustainable and eco-friendly approach to removing cadmium from water sources. A simple method is applied to synthesize floatable beads from a combination of natural clay, alginate, and eco-friendly modifiers, which makes them highly effective at capturing cadmium ions from aqueous solutions. The chemical and physical properties of natural clay (NC) and R-(Clay/Alg@Fe–Ni) composite beads were assessed by several techniques (XRD, BET, FT-IR, SEM, and TGA/DTG). The effects of experimental factors were optimized to maximize the adsorption of Cd (II). Furthermore, the study evaluates the kinetic and equilibrium aspects of cadmium adsorption and assesses the performance of the adsorbents. The results reveal that the adsorption of Cd (II) is most accurately described by the Langmuir and Sips isotherm model and the pseudo-second-order (PSO) kinetic model. These observations imply that the adsorbent's surface exhibits a uniform adsorption behavior, with chemical adsorption primarily governing the adsorption mechanism under optimal conditions. The adsorption capacity (95.7 mg/g) of R-(Clay/Alg@Fe–Ni) is three times greater than that of the unmodified NC, representing an improvement of 64.28%. Inner-sphere complexes involving oxygen-containing functional groups, physical adsorption, ion exchange, and electrostatic interactions were the primary mechanisms for removing Cd (II) ions. Overall, this study indicates that the modified clay/alginate floatable beads exhibit remarkable efficiency in cadmium removal.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"81 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-09513-5","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Water contamination by heavy metals has become a very alarming issue in all industrialized countries. The present study explores the development of a sustainable and eco-friendly approach to removing cadmium from water sources. A simple method is applied to synthesize floatable beads from a combination of natural clay, alginate, and eco-friendly modifiers, which makes them highly effective at capturing cadmium ions from aqueous solutions. The chemical and physical properties of natural clay (NC) and R-(Clay/Alg@Fe–Ni) composite beads were assessed by several techniques (XRD, BET, FT-IR, SEM, and TGA/DTG). The effects of experimental factors were optimized to maximize the adsorption of Cd (II). Furthermore, the study evaluates the kinetic and equilibrium aspects of cadmium adsorption and assesses the performance of the adsorbents. The results reveal that the adsorption of Cd (II) is most accurately described by the Langmuir and Sips isotherm model and the pseudo-second-order (PSO) kinetic model. These observations imply that the adsorbent's surface exhibits a uniform adsorption behavior, with chemical adsorption primarily governing the adsorption mechanism under optimal conditions. The adsorption capacity (95.7 mg/g) of R-(Clay/Alg@Fe–Ni) is three times greater than that of the unmodified NC, representing an improvement of 64.28%. Inner-sphere complexes involving oxygen-containing functional groups, physical adsorption, ion exchange, and electrostatic interactions were the primary mechanisms for removing Cd (II) ions. Overall, this study indicates that the modified clay/alginate floatable beads exhibit remarkable efficiency in cadmium removal.

Abstract Image

使用新型改性粘土/海藻酸盐浮珠进行生态友好型镉去除:缓解水污染的可持续解决方案
在所有工业化国家,重金属对水源的污染已成为一个非常令人担忧的问题。本研究探索了一种可持续的生态友好型方法来去除水源中的镉。本研究采用一种简单的方法,将天然粘土、海藻酸盐和生态友好型改性剂结合在一起,合成出可漂浮的珠子,使其能高效捕捉水溶液中的镉离子。通过多种技术(XRD、BET、FT-IR、SEM 和 TGA/DTG)评估了天然粘土(NC)和 R-(粘土/海藻酸盐@铁镍)复合珠的化学和物理性质。对实验因素的影响进行了优化,以最大限度地吸附镉(II)。此外,研究还评估了镉吸附的动力学和平衡方面,并评估了吸附剂的性能。研究结果表明,Langmuir 和 Sips 等温线模型以及伪二阶动力学模型对镉(II)的吸附进行了最准确的描述。这些观察结果表明,在最佳条件下,吸附剂表面表现出均匀的吸附行为,吸附机理主要受化学吸附的支配。R-(Clay/Alg@Fe-Ni) 的吸附容量(95.7 mg/g)是未改性 NC 的三倍,提高了 64.28%。涉及含氧官能团的内球复合物、物理吸附、离子交换和静电作用是去除镉(II)离子的主要机制。总之,这项研究表明,改性粘土/铝酸盐可浮珠具有显著的除镉效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering 综合性期刊-综合性期刊
CiteScore
5.20
自引率
3.40%
发文量
0
审稿时长
4.3 months
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信