Liquid Metal‐Based Multimodal Wearable Sensor Platform Enabled by Highly Accessible Microfabrication of PDMS with Tuned Mechanical Properties

Byungjin Kim, Sangmin Lee, Jae In Kim, Dong Hyeon Lee, Bon‐Jae Koo, Seong‐Geon Kim, Seyeong Ryu, Byungchul Kim, Min‐Ho Seo, Joonsoo Jeong
{"title":"Liquid Metal‐Based Multimodal Wearable Sensor Platform Enabled by Highly Accessible Microfabrication of PDMS with Tuned Mechanical Properties","authors":"Byungjin Kim, Sangmin Lee, Jae In Kim, Dong Hyeon Lee, Bon‐Jae Koo, Seong‐Geon Kim, Seyeong Ryu, Byungchul Kim, Min‐Ho Seo, Joonsoo Jeong","doi":"10.1002/admt.202400859","DOIUrl":null,"url":null,"abstract":"The seamless integration of wearable devices into user‐friendly and cost‐effective healthcare systems requires constituent materials with high degrees of flexibility, stretchability, and adhesive properties without compromising performance during dynamic body movements. This study proposes a liquid metal (LM)‐based multimodal skin‐mountable sensor platform using polydimethylsiloxane tuned for enhanced stretchability and stickiness (sPDMS) to fully leverage the LM's deformability. A highly accessible end‐to‐end fabrication approach is proposed for multifunctional LM sensors from modeling to fabrication and packaging, all achieved without the need for cleanroom facilities or special equipment. The LM‐based facile fabrication process tailored for sPDMS enables an adhesive‐free sensor patch with microfluidic channels of 100 µm width and stretchability up to 100%. A new analytical model provides enhanced estimation on the electromechanical behavior of LM channels compared with existing models. The funnel‐assisted LM filling and tape‐based channel sealing methods enable simple packaging of LM channels with robust external interconnection and direct skin‐interfaced monitoring. The feasibility of this healthcare platform is demonstrated through a multimodal sensor patch with electromechanical and electrophysiological functionalities. The proposed technology addresses current challenges in the cost and complexity of microfabrication, expanding the boundaries of wearable devices for highly accessible and personalized healthcare devices.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The seamless integration of wearable devices into user‐friendly and cost‐effective healthcare systems requires constituent materials with high degrees of flexibility, stretchability, and adhesive properties without compromising performance during dynamic body movements. This study proposes a liquid metal (LM)‐based multimodal skin‐mountable sensor platform using polydimethylsiloxane tuned for enhanced stretchability and stickiness (sPDMS) to fully leverage the LM's deformability. A highly accessible end‐to‐end fabrication approach is proposed for multifunctional LM sensors from modeling to fabrication and packaging, all achieved without the need for cleanroom facilities or special equipment. The LM‐based facile fabrication process tailored for sPDMS enables an adhesive‐free sensor patch with microfluidic channels of 100 µm width and stretchability up to 100%. A new analytical model provides enhanced estimation on the electromechanical behavior of LM channels compared with existing models. The funnel‐assisted LM filling and tape‐based channel sealing methods enable simple packaging of LM channels with robust external interconnection and direct skin‐interfaced monitoring. The feasibility of this healthcare platform is demonstrated through a multimodal sensor patch with electromechanical and electrophysiological functionalities. The proposed technology addresses current challenges in the cost and complexity of microfabrication, expanding the boundaries of wearable devices for highly accessible and personalized healthcare devices.

Abstract Image

基于液态金属的多模态可穿戴传感器平台,由具有可调机械特性的 PDMS 高可达微细加工实现
要将可穿戴设备无缝集成到用户友好且经济高效的医疗保健系统中,需要组成材料具有高度的柔韧性、伸展性和粘合性,同时又不影响身体动态运动时的性能。本研究提出了一种基于液态金属(LM)的多模态皮肤可安装传感器平台,该平台使用聚二甲基硅氧烷(sPDMS)来增强拉伸性和粘性,以充分利用液态金属的可变形性。该研究为多功能 LM 传感器提出了一种非常容易实现的端到端制造方法,从建模到制造和包装,所有过程都无需洁净室设施或特殊设备。基于 LM 的简易制造工艺专为 sPDMS 量身定制,可制造出无粘合剂的传感器贴片,其微流体通道宽度为 100 微米,拉伸率高达 100%。与现有模型相比,新的分析模型增强了对 LM 通道机电行为的估计。漏斗辅助 LM 填充和基于胶带的通道密封方法实现了 LM 通道的简单封装,并具有稳健的外部互连和直接的皮肤界面监测功能。这种医疗保健平台的可行性通过具有机电和电生理功能的多模态传感器贴片得到了验证。所提出的技术解决了当前微加工成本和复杂性方面的挑战,扩大了可穿戴设备的范围,实现了高度可及和个性化的医疗保健设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信