Mitigating inter-story drift concentration in seismic-resistant self-centering braced frames by using strong backup systems

IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Jiahao Huang, Songye Zhu
{"title":"Mitigating inter-story drift concentration in seismic-resistant self-centering braced frames by using strong backup systems","authors":"Jiahao Huang,&nbsp;Songye Zhu","doi":"10.1007/s10518-024-01997-8","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic-resistant self-centering concentrically braced frames (SC-CBFs) are susceptible to the concentration of inter-story drifts during earthquakes owing to the relatively low energy dissipation ability of braces. To address this limitation, this study proposed a novel solution by designing a strong backup (SB) system to mitigate inter-story deformation concentration in “weak” stories. The proposed SB system consisting of truss members can be attached to the existing SC-CBF through pin connections, forming a system, termed strong backup SC-CBF (SC-CBF-SB), to promote a more uniform distribution of inter-story drifts along the height of the frame and mitigate the weak story behavior. A six-story chevron-braced frame is adopted to investigate the seismic performance of SC-CBF and SC-CBF-SB. Finite element models of SC-CBF and SC-CBF-SB are built. The mechanical characteristics and dynamic responses of the SC-CBF-SB are examined. To comprehensively evaluate the performance of both SC-CBF and SC-CBF-SB, static pushover analyses and nonlinear time-history analyses are conducted. Additionally, incremental dynamic analysis (IDA) is performed to evaluate the responses (particularly drift concentration) of both frame types subjected to increasing seismic intensity levels. Numerical results show that the maximum value of the drift concentration factor (DCF) is around 1.3 and 1.8 for SC-CBF-SB and SC-CBF, respectively, indicating that SC-CBF-SB can effectively mitigate inter-story drift concentration of SC-CBF. Meanwhile, the proposed SB system has a minimal negative impact on the favorable SC ability of the frame.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 13","pages":"6509 - 6543"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-01997-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-01997-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic-resistant self-centering concentrically braced frames (SC-CBFs) are susceptible to the concentration of inter-story drifts during earthquakes owing to the relatively low energy dissipation ability of braces. To address this limitation, this study proposed a novel solution by designing a strong backup (SB) system to mitigate inter-story deformation concentration in “weak” stories. The proposed SB system consisting of truss members can be attached to the existing SC-CBF through pin connections, forming a system, termed strong backup SC-CBF (SC-CBF-SB), to promote a more uniform distribution of inter-story drifts along the height of the frame and mitigate the weak story behavior. A six-story chevron-braced frame is adopted to investigate the seismic performance of SC-CBF and SC-CBF-SB. Finite element models of SC-CBF and SC-CBF-SB are built. The mechanical characteristics and dynamic responses of the SC-CBF-SB are examined. To comprehensively evaluate the performance of both SC-CBF and SC-CBF-SB, static pushover analyses and nonlinear time-history analyses are conducted. Additionally, incremental dynamic analysis (IDA) is performed to evaluate the responses (particularly drift concentration) of both frame types subjected to increasing seismic intensity levels. Numerical results show that the maximum value of the drift concentration factor (DCF) is around 1.3 and 1.8 for SC-CBF-SB and SC-CBF, respectively, indicating that SC-CBF-SB can effectively mitigate inter-story drift concentration of SC-CBF. Meanwhile, the proposed SB system has a minimal negative impact on the favorable SC ability of the frame.

Abstract Image

利用强后备系统缓解抗震自定心支撑框架的层间漂移集中问题
抗震自定心同心支撑框架(SC-CBF)由于支撑的消能能力相对较低,在地震中很容易出现层间变形集中的情况。针对这一局限性,本研究提出了一种新的解决方案,即设计一个强支撑(SB)系统,以减轻 "弱 "层的层间变形集中。拟议的 SB 系统由桁架构件组成,可通过销钉连接连接到现有的 SC-CBF,形成一个系统,称为强后备 SC-CBF(SC-CBF-SB),以促进层间漂移沿框架高度更均匀地分布,并减轻薄弱层的行为。本文采用六层楔形梁框架来研究 SC-CBF 和 SC-CBF-SB 的抗震性能。建立了 SC-CBF 和 SC-CBF-SB 的有限元模型。研究了 SC-CBF-SB 的力学特性和动态响应。为了全面评估 SC-CBF 和 SC-CBF-SB 的性能,进行了静态推移分析和非线性时间-历史分析。此外,还进行了增量动力分析 (IDA),以评估这两种框架类型在地震烈度不断增加的情况下的反应(尤其是漂移集中)。数值结果表明,SC-CBF-SB 和 SC-CBF 的漂移集中系数(DCF)最大值分别约为 1.3 和 1.8,表明 SC-CBF-SB 可以有效缓解 SC-CBF 的层间漂移集中。同时,拟议的 SB 系统对框架的有利 SC 能力的负面影响很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Earthquake Engineering
Bulletin of Earthquake Engineering 工程技术-地球科学综合
CiteScore
8.90
自引率
19.60%
发文量
263
审稿时长
7.5 months
期刊介绍: Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings. Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more. This is the Official Publication of the European Association for Earthquake Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信