Sustainability inspired fabrication of next generation neurostimulation and cardiac rhythm management electrodes via reactive hierarchical surface restructuring
Shahram Amini, Hongbin Choi, Wesley Seche, Alexander Blagojevic, Nicholas May, Benjamin M. Lefler, Skyler L. Davis, Sahar Elyahoodayan, Pouya Tavousi, Steven J. May, Gregory A. Caputo, Terry C. Lowe, Jeffrey Hettinger, Sina Shahbazmohamadi
{"title":"Sustainability inspired fabrication of next generation neurostimulation and cardiac rhythm management electrodes via reactive hierarchical surface restructuring","authors":"Shahram Amini, Hongbin Choi, Wesley Seche, Alexander Blagojevic, Nicholas May, Benjamin M. Lefler, Skyler L. Davis, Sahar Elyahoodayan, Pouya Tavousi, Steven J. May, Gregory A. Caputo, Terry C. Lowe, Jeffrey Hettinger, Sina Shahbazmohamadi","doi":"10.1038/s41378-024-00754-w","DOIUrl":null,"url":null,"abstract":"<p>Over the last two decades, platinum group metals (PGMs) and their alloys have dominated as the materials of choice for electrodes in long-term implantable neurostimulation and cardiac rhythm management devices due to their superior conductivity, mechanical and chemical stability, biocompatibility, corrosion resistance, radiopacity, and electrochemical performance. Despite these benefits, PGM manufacturing processes are extremely costly, complex, and challenging with potential health hazards. Additionally, the volatility in PGM prices and their high supply risk, combined with their scarce concentration of approximately 0.01 ppm in the earth’s upper crust and limited mining geographical areas, underscores their classification as critical raw materials, thus, their effective recovery or substitution worldwide is of paramount importance. Since postmortem recovery from deceased patients and/or refining of PGMs that are used in the manufacturing of the electrodes and microelectrode arrays is extremely rare, challenging, and highly costly, therefore, substitution of PGM-based electrodes with other biocompatible materials that can yield electrochemical performance values equal or greater than PGMs is the only viable and sustainable solution to reduce and ultimately substitute the use of PGMs in long-term implantable neurostimulation and cardiac rhythm management devices. In this article, we demonstrate for the first time how the novel technique of “reactive hierarchical surface restructuring” can be utilized on titanium—that is widely used in many non-stimulation medical device and implant applications—to manufacture biocompatible, low-cost, sustainable, and high-performing neurostimulation and cardiac rhythm management electrodes. We have shown how the surface of titanium electrodes with extremely poor electrochemical performance undergoes compositional and topographical transformations that result in electrodes with outstanding electrochemical performance.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00754-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Over the last two decades, platinum group metals (PGMs) and their alloys have dominated as the materials of choice for electrodes in long-term implantable neurostimulation and cardiac rhythm management devices due to their superior conductivity, mechanical and chemical stability, biocompatibility, corrosion resistance, radiopacity, and electrochemical performance. Despite these benefits, PGM manufacturing processes are extremely costly, complex, and challenging with potential health hazards. Additionally, the volatility in PGM prices and their high supply risk, combined with their scarce concentration of approximately 0.01 ppm in the earth’s upper crust and limited mining geographical areas, underscores their classification as critical raw materials, thus, their effective recovery or substitution worldwide is of paramount importance. Since postmortem recovery from deceased patients and/or refining of PGMs that are used in the manufacturing of the electrodes and microelectrode arrays is extremely rare, challenging, and highly costly, therefore, substitution of PGM-based electrodes with other biocompatible materials that can yield electrochemical performance values equal or greater than PGMs is the only viable and sustainable solution to reduce and ultimately substitute the use of PGMs in long-term implantable neurostimulation and cardiac rhythm management devices. In this article, we demonstrate for the first time how the novel technique of “reactive hierarchical surface restructuring” can be utilized on titanium—that is widely used in many non-stimulation medical device and implant applications—to manufacture biocompatible, low-cost, sustainable, and high-performing neurostimulation and cardiac rhythm management electrodes. We have shown how the surface of titanium electrodes with extremely poor electrochemical performance undergoes compositional and topographical transformations that result in electrodes with outstanding electrochemical performance.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.