{"title":"ADP-Based Self-Triggered Optimal Control of Active Loads in DC Microgrid","authors":"Hanguang Su;Gan Zhi;Huaguang Zhang;Jiawei Wang;Goran Strbac;He Ren","doi":"10.1109/TCSII.2024.3452964","DOIUrl":null,"url":null,"abstract":"In this brief, an adaptive dynamic programming (ADP)-based self-triggered control (STC) method was proposed to address the optimization control problem of power buffer systems in DC microgrids. The optimization control problem of power buffers is addressed in the framework of non-zero sum games to ensure mutual cooperation among power buffers. In the proposed STC mechanism, the next triggering moment is determined by the current triggering information, avoiding continuous monitoring of devices under the event-triggered control (ETC) and reducing the occupation of system communication and computing resources. Besides, an experience replay (ER) method is introduced when updating the weights of the critic neural networks (NNs). The proposed method ensures the stability of the system, eliminates the Zeno phenomenon, and leads to an adjustable positive minimum triggering interval. The effectiveness of the proposed method is ultimately verified by using a DC microgrid case study.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 1","pages":"193-197"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10663297/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this brief, an adaptive dynamic programming (ADP)-based self-triggered control (STC) method was proposed to address the optimization control problem of power buffer systems in DC microgrids. The optimization control problem of power buffers is addressed in the framework of non-zero sum games to ensure mutual cooperation among power buffers. In the proposed STC mechanism, the next triggering moment is determined by the current triggering information, avoiding continuous monitoring of devices under the event-triggered control (ETC) and reducing the occupation of system communication and computing resources. Besides, an experience replay (ER) method is introduced when updating the weights of the critic neural networks (NNs). The proposed method ensures the stability of the system, eliminates the Zeno phenomenon, and leads to an adjustable positive minimum triggering interval. The effectiveness of the proposed method is ultimately verified by using a DC microgrid case study.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.