Ultra-Low Thermal Conductivity of Germanium Nanowires

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
A. V. Pavlikov, A. M. Sharafutdinova, C. I. Isacova, A. I. Cocemasov, D. L. Nika
{"title":"Ultra-Low Thermal Conductivity of Germanium Nanowires","authors":"A. V. Pavlikov,&nbsp;A. M. Sharafutdinova,&nbsp;C. I. Isacova,&nbsp;A. I. Cocemasov,&nbsp;D. L. Nika","doi":"10.1134/S1063783424601127","DOIUrl":null,"url":null,"abstract":"<p>We theoretically investigate phonon and thermal properties in germanium nanowires with square cross-sections ranging from 2.26 to 27.72 nm. Using a face-centered cubic cell model for lattice vibrations and the Boltzmann transport equation approach, we find that the thermal conductivity of Ge nanowires is 3 to 20 times lower than in bulk c-Ge, depending on the roughness of the nanowire surfaces. This significant decrease in lattice thermal conductivity results from the interplay between two effects: the redistribution of phonon energy spectra due to spatial confinement and phonon boundary scattering. We calculate the temperature distribution in a nanometer-thick porous germanium film with a thermal conductivity of 3.5 W/(m K), typical for rough Ge nanowires. Our results indicate the potential for localized heating in specific regions, reaching temperatures up to ~950 K. This finding aligns well with previous experimental estimations made using Raman spectroscopy.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783424601127","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We theoretically investigate phonon and thermal properties in germanium nanowires with square cross-sections ranging from 2.26 to 27.72 nm. Using a face-centered cubic cell model for lattice vibrations and the Boltzmann transport equation approach, we find that the thermal conductivity of Ge nanowires is 3 to 20 times lower than in bulk c-Ge, depending on the roughness of the nanowire surfaces. This significant decrease in lattice thermal conductivity results from the interplay between two effects: the redistribution of phonon energy spectra due to spatial confinement and phonon boundary scattering. We calculate the temperature distribution in a nanometer-thick porous germanium film with a thermal conductivity of 3.5 W/(m K), typical for rough Ge nanowires. Our results indicate the potential for localized heating in specific regions, reaching temperatures up to ~950 K. This finding aligns well with previous experimental estimations made using Raman spectroscopy.

Abstract Image

Abstract Image

超低导热率的锗纳米线
摘要 我们从理论上研究了横截面为 2.26 至 27.72 纳米的方形锗纳米线的声子和热特性。利用面心立方晶格振动模型和玻尔兹曼输运方程方法,我们发现锗纳米线的热导率比体锗低 3 到 20 倍,具体取决于纳米线表面的粗糙度。晶格热导率的显著降低源于两种效应的相互作用:空间约束和声子边界散射导致的声子能谱重新分布。我们计算了纳米厚多孔锗薄膜中的温度分布,其热导率为 3.5 W/(m K),是粗糙锗纳米线的典型值。我们的结果表明,在特定区域存在局部加热的可能性,温度最高可达~950 K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Solid State
Physics of the Solid State 物理-物理:凝聚态物理
CiteScore
1.70
自引率
0.00%
发文量
60
审稿时长
2-4 weeks
期刊介绍: Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信