{"title":"Enhancement of the hygrothermal ageing properties of gelatine films by ethylene glycol diglycidyl ether","authors":"Jiaojiao Liu, Wenqiang Dong, Junchang Yang, Zhongwei Chen, Jing Cao, Ran Chen","doi":"10.1186/s40494-024-01413-z","DOIUrl":null,"url":null,"abstract":"<p>Owing to the instability of gelatine in hygrothermal environments, gelatine-based cultural heritage undergo various deterioration processes, such as cracking, peeling, warping, curling and fracture, posing significant threats to its long-term preservation. Building on previous research, this study investigates the stability of polyol glycidyl ether–gelatine composite films under high-humidity and high-temperature conditions using ethylene glycol diglycidyl ether (EGDE) as a model compound. The hygrothermal ageing properties of EGDE–gelatine composite films are evaluated in terms of macrosize, mesoscopic structure, surface properties and mechanical properties. Results indicate that EGDE enhances the dimensional stability and swelling ratios of the composite films, stabilizes the pore structure and distribution and maintains the hydrophilicity and molecular structural stability under hygrothermal ageing conditions. Furthermore, the incorporation of EGDE leads to superior stress–strain properties of the composite films in such challenging environments. This study provides valuable experimental data for the preparation and conservation applications of gelatine-based cultural heritage materials.</p>","PeriodicalId":13109,"journal":{"name":"Heritage Science","volume":"9 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40494-024-01413-z","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to the instability of gelatine in hygrothermal environments, gelatine-based cultural heritage undergo various deterioration processes, such as cracking, peeling, warping, curling and fracture, posing significant threats to its long-term preservation. Building on previous research, this study investigates the stability of polyol glycidyl ether–gelatine composite films under high-humidity and high-temperature conditions using ethylene glycol diglycidyl ether (EGDE) as a model compound. The hygrothermal ageing properties of EGDE–gelatine composite films are evaluated in terms of macrosize, mesoscopic structure, surface properties and mechanical properties. Results indicate that EGDE enhances the dimensional stability and swelling ratios of the composite films, stabilizes the pore structure and distribution and maintains the hydrophilicity and molecular structural stability under hygrothermal ageing conditions. Furthermore, the incorporation of EGDE leads to superior stress–strain properties of the composite films in such challenging environments. This study provides valuable experimental data for the preparation and conservation applications of gelatine-based cultural heritage materials.
期刊介绍:
Heritage Science is an open access journal publishing original peer-reviewed research covering:
Understanding of the manufacturing processes, provenances, and environmental contexts of material types, objects, and buildings, of cultural significance including their historical significance.
Understanding and prediction of physico-chemical and biological degradation processes of cultural artefacts, including climate change, and predictive heritage studies.
Development and application of analytical and imaging methods or equipments for non-invasive, non-destructive or portable analysis of artwork and objects of cultural significance to identify component materials, degradation products and deterioration markers.
Development and application of invasive and destructive methods for understanding the provenance of objects of cultural significance.
Development and critical assessment of treatment materials and methods for artwork and objects of cultural significance.
Development and application of statistical methods and algorithms for data analysis to further understanding of culturally significant objects.
Publication of reference and corpus datasets as supplementary information to the statistical and analytical studies above.
Description of novel technologies that can assist in the understanding of cultural heritage.