Yong Wang, Pengbo Zhou, Guohua Geng, Li An, Mingquan Zhou
{"title":"Enhancing point cloud registration with transformer: cultural heritage protection of the Terracotta Warriors","authors":"Yong Wang, Pengbo Zhou, Guohua Geng, Li An, Mingquan Zhou","doi":"10.1186/s40494-024-01425-9","DOIUrl":null,"url":null,"abstract":"<p>Point cloud registration technology, by precisely aligning repair components with the original artifacts, can accurately record the geometric shape of cultural heritage objects and generate three-dimensional models, thereby providing reliable data support for the digital preservation, virtual exhibition, and restoration of cultural relics. However, traditional point cloud registration methods face challenges when dealing with cultural heritage data, including complex morphological and structural variations, sparsity and irregularity, and cross-dataset generalization. To address these challenges, this paper introduces an innovative method called Enhancing Point Cloud Registration with Transformer (EPCRT). Firstly, we utilize local geometric perception for positional encoding and combine it with a dynamic adjustment mechanism based on local density information and geometric angle encoding, enhancing the flexibility and adaptability of positional encoding to better characterize the complex local morphology and structural variations of artifacts. Additionally, we introduce a convolutional-Transformer hybrid module to facilitate interactive learning of artifact point cloud features, effectively achieving local–global feature fusion and enhancing detail capture capabilities, thus effectively handling the sparsity and irregularity of artifact point cloud data. We conduct extensive evaluations on the 3DMatch, ModelNet, KITTI, and MVP-RG datasets, and validate our method on the Terracotta Warriors cultural heritage dataset. The results demonstrate that our method has significant performance advantages in handling the complexity of morphological and structural variations, sparsity and irregularity of relic data, and cross-dataset generalization.</p>","PeriodicalId":13109,"journal":{"name":"Heritage Science","volume":"9 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40494-024-01425-9","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Point cloud registration technology, by precisely aligning repair components with the original artifacts, can accurately record the geometric shape of cultural heritage objects and generate three-dimensional models, thereby providing reliable data support for the digital preservation, virtual exhibition, and restoration of cultural relics. However, traditional point cloud registration methods face challenges when dealing with cultural heritage data, including complex morphological and structural variations, sparsity and irregularity, and cross-dataset generalization. To address these challenges, this paper introduces an innovative method called Enhancing Point Cloud Registration with Transformer (EPCRT). Firstly, we utilize local geometric perception for positional encoding and combine it with a dynamic adjustment mechanism based on local density information and geometric angle encoding, enhancing the flexibility and adaptability of positional encoding to better characterize the complex local morphology and structural variations of artifacts. Additionally, we introduce a convolutional-Transformer hybrid module to facilitate interactive learning of artifact point cloud features, effectively achieving local–global feature fusion and enhancing detail capture capabilities, thus effectively handling the sparsity and irregularity of artifact point cloud data. We conduct extensive evaluations on the 3DMatch, ModelNet, KITTI, and MVP-RG datasets, and validate our method on the Terracotta Warriors cultural heritage dataset. The results demonstrate that our method has significant performance advantages in handling the complexity of morphological and structural variations, sparsity and irregularity of relic data, and cross-dataset generalization.
期刊介绍:
Heritage Science is an open access journal publishing original peer-reviewed research covering:
Understanding of the manufacturing processes, provenances, and environmental contexts of material types, objects, and buildings, of cultural significance including their historical significance.
Understanding and prediction of physico-chemical and biological degradation processes of cultural artefacts, including climate change, and predictive heritage studies.
Development and application of analytical and imaging methods or equipments for non-invasive, non-destructive or portable analysis of artwork and objects of cultural significance to identify component materials, degradation products and deterioration markers.
Development and application of invasive and destructive methods for understanding the provenance of objects of cultural significance.
Development and critical assessment of treatment materials and methods for artwork and objects of cultural significance.
Development and application of statistical methods and algorithms for data analysis to further understanding of culturally significant objects.
Publication of reference and corpus datasets as supplementary information to the statistical and analytical studies above.
Description of novel technologies that can assist in the understanding of cultural heritage.