Reconstructing the local structures of Chinese ancient architecture using unsupervised depth estimation

IF 2.6 1区 艺术学 Q2 CHEMISTRY, ANALYTICAL
Xiaoling Yao, Lihua Hu, Jifu Zhang
{"title":"Reconstructing the local structures of Chinese ancient architecture using unsupervised depth estimation","authors":"Xiaoling Yao, Lihua Hu, Jifu Zhang","doi":"10.1186/s40494-024-01433-9","DOIUrl":null,"url":null,"abstract":"<p>Digitalization of ancient architectures is one of the effective means for the preservation of heritage structures, with 3D reconstruction based on computer vision being a key component of such digitalization techniques. However, Chinese ancient architectures are located in mountainous areas, and existing 3D reconstruction methods fall short in restoring the local structures of these architectures. This paper proposes a self-attention-guided unsupervised single image-based depth estimation method, providing innovative technical support for the reconstruction of local structures in Chinese ancient architectures. First, an attention module is constructed based on features extracted from architectural images learned by the encoder, and then embedded into the encoder-decoder to capture the interdependencies across local features. Second, a disparity map is generated using the loss constraint network, including reconstruction matching, smoothness of the disparity, and left-right disparity consistency. Third, an unsupervised architecture based on binocular image pairs is constructed to remove any potential adverse effects due to unknown scale or estimated pose errors. Finally, with the known baseline distance and camera focal length, the disparity map is converted into the depth map to perform the end-to-end depth estimation from a single image. Experiments on the our architecture dataset validates our method, and it performs well also well on KITTI.</p>","PeriodicalId":13109,"journal":{"name":"Heritage Science","volume":"75 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40494-024-01433-9","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Digitalization of ancient architectures is one of the effective means for the preservation of heritage structures, with 3D reconstruction based on computer vision being a key component of such digitalization techniques. However, Chinese ancient architectures are located in mountainous areas, and existing 3D reconstruction methods fall short in restoring the local structures of these architectures. This paper proposes a self-attention-guided unsupervised single image-based depth estimation method, providing innovative technical support for the reconstruction of local structures in Chinese ancient architectures. First, an attention module is constructed based on features extracted from architectural images learned by the encoder, and then embedded into the encoder-decoder to capture the interdependencies across local features. Second, a disparity map is generated using the loss constraint network, including reconstruction matching, smoothness of the disparity, and left-right disparity consistency. Third, an unsupervised architecture based on binocular image pairs is constructed to remove any potential adverse effects due to unknown scale or estimated pose errors. Finally, with the known baseline distance and camera focal length, the disparity map is converted into the depth map to perform the end-to-end depth estimation from a single image. Experiments on the our architecture dataset validates our method, and it performs well also well on KITTI.

Abstract Image

利用无监督深度估计重建中国古建筑的局部结构
古建筑数字化是保护文物建筑的有效手段之一,而基于计算机视觉的三维重建技术则是这种数字化技术的重要组成部分。然而,中国的古建筑多位于山区,现有的三维重建方法无法还原这些建筑的局部结构。本文提出了一种自注意力引导的基于单幅图像的无监督深度估计方法,为中国古建筑局部结构的重建提供了创新的技术支持。首先,根据编码器从建筑图像中提取的特征构建注意力模块,然后嵌入编码器-解码器,以捕捉局部特征之间的相互依存关系。其次,利用损失约束网络生成差异图,包括重建匹配、差异平滑度和左右差异一致性。第三,构建一个基于双目图像对的无监督架构,以消除未知比例或估计姿势误差可能造成的不利影响。最后,在已知基线距离和相机焦距的情况下,将差异图转换为深度图,从而从单张图像进行端到端的深度估算。在我们的架构数据集上进行的实验验证了我们的方法,它在 KITTI 上的表现也很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heritage Science
Heritage Science Arts and Humanities-Conservation
CiteScore
4.00
自引率
20.00%
发文量
183
审稿时长
19 weeks
期刊介绍: Heritage Science is an open access journal publishing original peer-reviewed research covering: Understanding of the manufacturing processes, provenances, and environmental contexts of material types, objects, and buildings, of cultural significance including their historical significance. Understanding and prediction of physico-chemical and biological degradation processes of cultural artefacts, including climate change, and predictive heritage studies. Development and application of analytical and imaging methods or equipments for non-invasive, non-destructive or portable analysis of artwork and objects of cultural significance to identify component materials, degradation products and deterioration markers. Development and application of invasive and destructive methods for understanding the provenance of objects of cultural significance. Development and critical assessment of treatment materials and methods for artwork and objects of cultural significance. Development and application of statistical methods and algorithms for data analysis to further understanding of culturally significant objects. Publication of reference and corpus datasets as supplementary information to the statistical and analytical studies above. Description of novel technologies that can assist in the understanding of cultural heritage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信