{"title":"Microplastics caused embryonic growth retardation and placental dysfunction in pregnant mice by activating GRP78/IRE1α/JNK axis induced apoptosis and endoplasmic reticulum stress","authors":"Jun Bai, Yuzeng Wang, Siwei Deng, Ying Yang, Sheng Chen, Zhenlong Wu","doi":"10.1186/s12989-024-00595-5","DOIUrl":null,"url":null,"abstract":"Microplastics (MPs), a brand-new class of worldwide environmental pollutant, have received a lot of attention. MPs are consumed by both humans and animals through water, food chain and other ways, which may cause potential health risks. However, the effects of MPs on embryonic development, especially placental function, and its related mechanisms still need to be further studied. We investigated the impact on fetal development and placental physiological function of pregnant mice by consecutive gavages of MPs at 0, 25, 50, 100 mg/kg body weight during gestational days (GDs 0–14). The results showed that continuous exposure to high concentrations of MP significantly reduced daily weight gain and impaired reproductive performance of pregnant mice. In addition, MPs could significantly induce oxidative stress and placental dysfunction in pregnant mice. On the other hand, MPs exposure significantly decreased placental barrier function and induced placental inflammation. Specifically, MPs treatment significantly reduced the expression of tight junction proteins in placentas, accompanied by inflammatory cell infiltration and increased mRNA levels of pro-inflammatory cytokines and chemokines in placentas. Finally, we found that MPs induced placental apoptosis and endoplasmic reticulum (ER) stress through the GRP78/IRE1α/JNK axis, leading to placental dysfunction and decreased reproductive performance in pregnant mice. We revealed for the first time that the effects of MPs on placental dysfunction in pregnant animals. Blocking the targets of MPs mediated ER stress will provide potential therapeutic ideas for the toxic effects of MPs on maternal pregnancy.","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle and Fibre Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12989-024-00595-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs), a brand-new class of worldwide environmental pollutant, have received a lot of attention. MPs are consumed by both humans and animals through water, food chain and other ways, which may cause potential health risks. However, the effects of MPs on embryonic development, especially placental function, and its related mechanisms still need to be further studied. We investigated the impact on fetal development and placental physiological function of pregnant mice by consecutive gavages of MPs at 0, 25, 50, 100 mg/kg body weight during gestational days (GDs 0–14). The results showed that continuous exposure to high concentrations of MP significantly reduced daily weight gain and impaired reproductive performance of pregnant mice. In addition, MPs could significantly induce oxidative stress and placental dysfunction in pregnant mice. On the other hand, MPs exposure significantly decreased placental barrier function and induced placental inflammation. Specifically, MPs treatment significantly reduced the expression of tight junction proteins in placentas, accompanied by inflammatory cell infiltration and increased mRNA levels of pro-inflammatory cytokines and chemokines in placentas. Finally, we found that MPs induced placental apoptosis and endoplasmic reticulum (ER) stress through the GRP78/IRE1α/JNK axis, leading to placental dysfunction and decreased reproductive performance in pregnant mice. We revealed for the first time that the effects of MPs on placental dysfunction in pregnant animals. Blocking the targets of MPs mediated ER stress will provide potential therapeutic ideas for the toxic effects of MPs on maternal pregnancy.
期刊介绍:
Particle and Fibre Toxicology is an online journal that is open access and peer-reviewed. It covers a range of disciplines such as material science, biomaterials, and nanomedicine, focusing on the toxicological effects of particles and fibres. The journal serves as a platform for scientific debate and communication among toxicologists and scientists from different fields who work with particle and fibre materials. The main objective of the journal is to deepen our understanding of the physico-chemical properties of particles, their potential for human exposure, and the resulting biological effects. It also addresses regulatory issues related to particle exposure in workplaces and the general environment. Moreover, the journal recognizes that there are various situations where particles can pose a toxicological threat, such as the use of old materials in new applications or the introduction of new materials altogether. By encompassing all these disciplines, Particle and Fibre Toxicology provides a comprehensive source for research in this field.